
A Support for Persistent Memory in Java

Advisors: Pierre Sutra, Gaël Thomas
Télécom SudParis

Institut Polytechnique de Paris

Ph.D. Defense – Mar. 24th, 2023

Anatole Lefort

A Support for Persistent Memory in Java

Advisors: Pierre Sutra, Gaël Thomas
Télécom SudParis

Institut Polytechnique de Paris

Ph.D. Defense – Mar. 24th, 2023

Anatole Lefort

Background

Computer programs deal with two kinds of data.

- Transient:
- Limited Lifetime: renewed at every program execution.

- do not survive crashes.
- hosted in Main Memory

- Persistent:
- Extended Lifetime: recalled and reused in subsequent executions.

- remain consistent even in the wake of a failure.
- hosted on Storage Devices

Data Persistence

1

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

CPU

DRAM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

1 - Dual data representation
2 - Expensive I/Os

CPU

DRAM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

Background

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- Durable: resist reboots, power loss
- Large capacity: at least TBs
- Slow access latency: 200µs-15ms

Data Persistence

2

1 - Dual data representation
2 - Expensive I/Os

CPU

DRAM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Keep data consistent across media
2 - Trade durability guarantees for performance

Complex Software

Background

Persistent Memory (PMEM)

3

CPU

DRAM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM
What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM,
 CPU-attached persistent media

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data,
 disks become redundant

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data,
 disks become redundant
3- no more disk I/Os

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data,
 disks become redundant
3- no more disk I/Os
4- working copy of data is durable

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1 - Single data representation
2 - Direct access

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data,
 disks become redundant
3- no more disk I/Os
4- working copy of data is durable

What changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Persistent Memory (PMEM)

3

CPU

PMEM

DRAM

DRAM

DRAM

(Persistent) (Volatile)

1 - Dual data representation
2 - Expensive I/Os

1 - Single data representation
2 - Direct access

1- add PMEM DIMM,
 CPU-attached persistent media
2- move persistent data,
 disks become redundant
3- no more disk I/Os
4- working copy of data is durable

1- No more (un)marshalling
2- No need for data caching
3- Faster recovery
4- Lower software complexity

BenefitsWhat changes with PMEM ?

Background

PMEM: A memory device on which data survives power cycles.

Non-volatile main memory (NVMM)

new persistent medium (in-between SSD and DRAM)

Durable
resists reboots, power loss

High-density
smallest DIMM = 128 GB
up to 8x DDR4 capacity

Byte addressable
persistent memory abstraction

High-performance
low latency (seq. read/write ~ 160/90ns)
high bandwidth (up to 8.10GB/s, 2nd gen)

4

Intel Optane PMEM, 2019

Background

Non-volatile main memory (NVMM)

new persistent medium (in-between SSD and DRAM)

Durable
resists reboots, power loss

High-density
smallest DIMM = 128 GB
up to 8x DDR4 capacity

Byte addressable
persistent memory abstraction

High-performance
low latency (seq. read/write ~ 160/90ns)
high bandwidth (up to 8.10GB/s, 2nd gen)

4

Intel Optane PMEM, 2019

Background

CPU

DDR4

NVMM

Non-volatile main memory (NVMM)

new persistent medium (in-between SSD and DRAM)

Durable
resists reboots, power loss

High-density
smallest DIMM = 128 GB
up to 8x DDR4 capacity

Byte addressable
persistent memory abstraction

High-performance
low latency (seq. read/write ~ 160/90ns)
high bandwidth (up to 8.10GB/s, 2nd gen)

4

Intel Optane PMEM, 2019

Direct byte-addressability of durable data

Background

Non-volatile main memory (NVMM)

new persistent medium (in-between SSD and DRAM)

Durable
resists reboots, power loss

High-density
smallest DIMM = 128 GB
up to 8x DDR4 capacity

Byte addressable
persistent memory abstraction

High-performance
low latency (seq. read/write ~ 160/90ns)
high bandwidth (up to 8.10GB/s, 2nd gen)

4

Intel Optane PMEM, 2019

Dramatic throughput and latency
improvement for persistent data applications

Direct byte-addressability of durable data

Simpler code bases with single data
representation and no file I/Os

Background

NVMM - Usage

How do we use it ? Storage device compatibility mode (1) ? Persistent Memory (2) ?

(1) File system interface
open/close/read/write/sync

(2) Direct memory access
mmap

5

Intel Optane PMEM, 2019

Background

NVMM - Usage

6

Varying record size in YCSB-F.

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface
open/close/read/write/sync

Background

NVMM - Usage

6

Varying record size in YCSB-F.

- Disabling durability significantly boost performance
- Dummy file systems are seemingly identical to a PMEM FS

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface
open/close/read/write/sync

Background

NVMM - Usage

6

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface
open/close/read/write/sync

Varying record size in YCSB-F.

- Disabling durability significantly boost performance
- Dummy file systems are seemingly identical to a PMEM FS

Software Bottlenecks:
 - dual representation
 (consistency)
 - cost of marshalling

Background

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

7

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

(Persistent)

(Volatile)

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stale

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stall

3- Hardware dictates when and in which
order data are evicted from caches

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stall

3- Hardware dictates when and in which
order data are evicted from caches

4- update eventually reaches NVMM

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stall

3- Hardware dictates when and in which
order data are evicted from caches

4- update eventually reaches NVMM

Version in caches () diverged from NVMM ()

Is it always safe to recover () after a crash ?
How to keep data crash-consistent ?

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

 + special flush/fence CPU instructions
 (manually control cache line eviction order)

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stall

3- Hardware dictates when and in which
order data are evicted from caches

4- update eventually reaches NVMM

Version in caches () diverged from NVMM ()

Is it always safe to recover () after a crash ?
How to keep data crash-consistent ?

Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

 + special flush/fence CPU instructions
 (manually control cache line eviction order)

⇒ Too low-level programming
⇒ Brittle reasoning about crash-consistency

NVMM - Usage

7

CPU

NVMM

DRAM

DRAM

DRAM

iMC

(Persistent)

(Volatile)

Core

L1/2

Core

L1/2

L3

data update path
1- pull data in CPU caches

2- update data in CPU caches first,
NVMM version becomes stall

3- Hardware dictates when and in which
order data are evicted from caches

4- update eventually reaches NVMM

Version in caches () diverged from NVMM ()

Is it always safe to recover () after a crash ?
How to keep data crash-consistent ?

Background

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access ~ the easy way
mmap
+ fitting programming abstractions (e.g. Intel’s PMDK)

⇒ ensure data crash-consistency
⇒ aid data recovery

8

Background

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access ~ the easy way
mmap
+ fitting programming abstractions (e.g. Intel’s PMDK)

⇒ ensure data crash-consistency
⇒ aid data recovery

challenges:
 _ support for failure-atomicity abstractions ?
 _ persistent memory allocator ?
 _ persistent pointers in ephemeral process address space ?

8

Background

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access ~ the easy way
mmap
+ fitting programming abstractions (e.g. Intel’s PMDK)

⇒ ensure data crash-consistency
⇒ aid data recovery

challenges:
 _ support for failure-atomicity abstractions ?
 _ persistent memory allocator ?
 _ persistent pointers in ephemeral process address space ?

8

Language-level NVMM programming help & support

Background

Why Java? - greatest programming language (seriously)

Managed language - first released in the 90s - still an industry standard.

Many data stores & processing frameworks:
- Spark, Hadoop, Kafka, Flink, Cassandra, HBase, Elasticsearch, etc.

9

Background

Why Java? - (lack of) NVMM support

Nearly all NVMM libraries and tools support only native code (C, C++)

Lack of efficient interfaces :
(1) File System [ext4-dax]

- storage device compatibility mode (cf. slide 6)

(2) Intel’s PMDK through the Java Native Interface (JNI) [PCJ]
- native library with compatibility layer

- slower than FS on YCSB benchmark (cf. evaluation)

Problem statement: No Java-native NVMM interface
9

Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
 = extend JVM to manage persistent memory

10

Prior art: internal design Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
 = extend JVM to manage persistent memory

10

Prior art: internal design

Exp1: Varying cache ratio
(YCSB-F, Infinispan with 80GB dataset)

GC cost outweighs the benefits of large DRAM caches

Exp2: Increasing dataset
(YCSB-F, go-pmem)

Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
 = extend JVM to manage persistent memory

10

Prior art: internal design

Features

managed persistent objects

non-scalable

heavily-modified JVM

Exp2: Increasing dataset
(YCSB-F, go-pmem)

Exp1: Varying cache ratio
(YCSB-F, Infinispan with 80GB dataset)

GC cost outweighs the benefits of large DRAM caches

- Garbage collectors do not scale to large persistent datasets

Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
 = extend JVM to manage persistent memory

10

Prior art: internal design

Features

managed persistent objects

non-scalable

heavily-modified JVM

orthogonal persistence
(pnew, @persistentRoot)

Exp1: Varying cache ratio
(YCSB-F, Infinispan with 80GB dataset)

GC cost outweighs the benefits of large DRAM caches

Exp2: Increasing dataset
(YCSB-F, go-pmem)

- No dedicated persistent types
In [go-pmem]: “as the applications become complicated
it becomes increasingly difficult to keep track of exactly
which variables and pointers are in persistent memory”.

- Garbage collectors do not scale to large persistent datasets

Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
 = extend JVM to manage persistent memory

Exp2: Increasing dataset
(YCSB-F, go-pmem)

Exp1: Varying cache ratio
(YCSB-F, Infinispan with 80GB dataset)

GC cost outweighs the benefits of large DRAM caches

10

Prior art: internal design

Features

managed persistent objects

non-scalable

heavily-modified JVM

orthogonal persistence
(pnew, @persistentRoot)

failure-atomic blocks

- Heavy runtime dynamic instrumentation
code instrumentation = 51% slower in [Autopersist]
up to 48% slower in our (non-instrumented) eval.

- No dedicated persistent types
In [go-pmem]: “as the applications become complicated
it becomes increasingly difficult to keep track of exactly
which variables and pointers are in persistent memory”.

- Garbage collectors do not scale to large persistent datasets

Motivation

Contribution Overview

11

Challenges

(1) single data representation

(2) direct access to NVMM

(3) crash-consistency

(4) object-oriented idioms

(5) explicit persistent types

(6) persistent memory management
with low overhead and scalable to large heaps

J-NVM - Off-Heap Persistent Objects

Persistent
Memory

Java

J-NVM

Contribution Overview

11

Challenges

(1) single data representation

(2) direct access to NVMM

(3) crash-consistency

(4) object-oriented idioms

(5) explicit persistent types

(6) persistent memory management
with low overhead and scalable to large heaps

J-NVM - Off-Heap Persistent Objects

Persistent
Memory

Java

Features

(1, 6) off-heap persistent objects

(2) sun.misc.Unsafe

(3) failure-atomic blocks + fine-grained

(4) persistent java objects + PDT library

(5) class-centric model
+ code generator

(6) recovery-time GC (no online GC)
explicit free()

J-NVM

Demo - the application

12

J-NVM

Account

-id: Integer
-balance: Long

+transferTo(Account dest, long amount)

Bank

-accounts: Map<String, Account>

+performTransfer(String from, String to, long amount)
+createAccount(String id, long initialDeposit)

Server

A Simple Bank:

Demo - It’s showtime !

13

J-NVM

https://asciinema.org/a/499292
https://asciinema.org/a/499292

Outline

14

(1) Introduction
- data persistence
- persistent memory
- NVMM
- why Java?
- prior art
- contribution overview

(2) System Design of J-NVM
- demo
- key idea
- programming model

- persistent objects
- code generator

- J-PFA
- J-PDT

(3) Evaluation
- YCSB benchmark
- recovery

(4) Conclusion

J-NVM

Overview

15

J-NVM = Off-Heap Persistent Objects

Key idea
each persistent object is decoupled into

- a persistent data structure: unmanaged, allocated off-heap (NVMM)

- a proxy: managed, allocated on-heap (DRAM)

Sys Design

Programming model - persistent objects

16

Persistent object is
- a persistent data structure

- holds object fields
- a proxy

- holds object methods
- implements PObject interface
- intermediates access to pers. data structure
- instantiated lazily (low GC pressure)

Alive when reachable (from persistent root)

Class-centric model
- safe references thanks to the type system

Map root = JNVM.root();
Bank b = root.get(“Bank”);
Account a = b.find(“toto”);
a.setBalance(42);

(DRAM)

(NVMM)

42

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

Account a = new Account(“toto”, 42);

(DRAM)

(NVMM)

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

Account a = new Account(“toto”, 42);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

Account a = new Account(“toto”, 42);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

Account a = new Account(“toto”, 42);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

Account a = bank.find(“toto”);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

Account a = bank.find(“toto”);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

Account a = bank.find(“toto”);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

42

JNVM.free(a);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

JNVM.free(a);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

JNVM.free(a);

Sys Design

Programming model - life cycle

17

Constructor
- allocate NVMM
- attach persistent data structure

Re-Constructor
- re-attach proxy
- re-build soft state via resurrect()

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

(DRAM)

(NVMM)

JNVM.free(a);

Sys Design

Overview

18

J-NVM = Off-Heap Persistent Objects

Tooling

- built-in off-heap memory management for NVMM
- code generator: automatic decoupling for POJOs
- J-PFA: automatic failure-atomic code
- J-PDT: data types + collections for persistent memory
- low-level API (for experts)
- recovery-time GC

Implementation

Programming model - code generator

19

@Persistent(fa="non-private")
class Account {
 PString name;
 int balance;
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
}

Goals

(1) compute class-wide off-heap layout
(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

Programming model - code generator

19

@Persistent(fa="non-private")
class Account {
 PString name;
 int balance;
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
}

Goals

(1) compute class-wide off-heap layout
(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

Programming model - code generator

19

@Persistent(fa="non-private")
class Account {
 PString name;
 int balance;
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
}

(DRAM)

(PMEM)

bal.

addr

0 8 16 20

y

name

Goals

(1) compute class-wide off-heap layout
(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

Programming model - code generator

19

// transformed code (decompiled)
class Account {

 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
}

(DRAM)

(PMEM)

bal.

addr

0 8 16 20

y

name

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

Programming model - code generator

19

// transformed code (decompiled)
class Account {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
}

(DRAM)

(PMEM)

bal.

addr

0 8 16 20

y

name

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

// transformed code (continued)
 PString getName() {
 return JNVM.readPObject(addr, 0);
 }
 protected void setName(PString v) {
 JNVM.writePObject(addr, 0, v);
 }

 int getBalance() {
 return JNVM.readInt(addr, 8);
 }
 void setBalance(int v) {
 JNVM.writeInt(addr, 8, v);
 }
…

Programming model - code generator

19

// transformed code (decompiled)
class Account {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
…

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

// transformed code (continued)
 PString getName() {
 return JNVM.readPObject(addr, 0);
 }
 protected void setName(PString v) {
 JNVM.writePObject(addr, 0, v);
 }

 int getBalance() {
 return JNVM.readInt(addr, 8);
 }
 void setBalance(int v) {
 JNVM.writeInt(addr, 8, v);
 }
…

Programming model - code generator

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
…

1- Use JNVM static helpers

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

// transformed code (continued)
 PString getName() {
 return JNVM.readPObject(addr, 0);
 }
 protected void setName(PString v) {
 JNVM.writePObject(addr, 0, v);
 }

 int getBalance() {
 return JNVM.readInt(addr, 8);
 }
 void setBalance(int v) {
 JNVM.writeInt(addr, 8, v);
 }
…

Programming model - code generator

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
…

1- Use JNVM static helpers with field offsets

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

// transformed code (continued)
 PString getName() {
 return JNVM.readPObject(addr, 0);
 }
 protected void setName(PString v) {
 JNVM.writePObject(addr, 0, v);
 }

 int getBalance() {
 return JNVM.readInt(addr, 8);
 }
 void setBalance(int v) {
 JNVM.writeInt(addr, 8, v);
 }
…

Programming model - code generator

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.name = new PString(id);
 this.balance = balance;
 }

 void transferTo(Account dest, int amount) {
 this.balance -= amount;
 dest.balance += amount;
 }
…

1- Use JNVM static helpers with field offsets
2- internal setter for final fields

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Implementation

Programming model - code generator
Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.setName(new PString(id));
 this.setBalance(balance);
 }

 void transferTo(Account dest, int amount) {
 this.setBalance(getBalance() - amount);
 dest.setBalance(dest.getBalance() + amount);
 }
…

Implementation

Programming model - code generator
Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 this.addr = JNVM.alloc(getClass(), size());
 this.setName(new PString(id));
 this.setBalance(balance);
 }

 void transferTo(Account dest, int amount) {
 this.setBalance(getBalance() - amount);
 dest.setBalance(dest.getBalance() + amount);
 }
…

// transformed code (continued)
 Account(long addr) {
 this.addr = addr;
 this.resurrect();
 }
…

Implementation

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Programming model - code generator

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 JNVM.faStart();
 this.addr = JNVM.alloc(getClass(), size());
 this.setName(new PString(id));
 this.setBalance(balance);
 JNVM.faEnd();
 }

 void transferTo(Account dest, int amount) {
 JNVM.faStart();
 this.setBalance(getBalance() - amount);
 dest.setBalance(dest.getBalance() + amount);
 JNVM.faEnd();
 }
…

Implementation

Goals

(1) compute class-wide off-heap layout
(a) remove persistent attributes
(b) add “addr” field
(c) generate or transform field getters/setters

(2) replace (non-transient) field accesses
(3) generate constructor, re-constructor
(4) FA-wrap non-private methods

Programming model - code generator

19

// transformed code (decompiled)
class Account implements PObject {
 long addr; // persistent data structure
 transient int y;

 Account(String name, int balance) {
 JNVM.faStart();
 this.addr = JNVM.alloc(getClass(), size());
 this.setName(new PString(id));
 this.setBalance(balance);
 JNVM.faEnd();
 }

 void transferTo(Account dest, int amount) {
 JNVM.faStart();
 this.setBalance(getBalance() - amount);
 dest.setBalance(dest.getBalance() + amount);
 JNVM.faEnd();
 }
…

Tool implementation

(1) Bytecode-to-bytecode transformer
(2) post-compilation Maven plugin

Implementation

J-PFA

20

Automatic crash-consistent update
usage = JNVM.faStart() some code JNVM.faEnd()

Per-thread persistent redo-log (inspired by Romulus)

Log new, free and updates
granularity = a block of PMEM

Do not log updates to “new” persistent objects
 (e.g. allocated within the FA-block)

Implementation

J-PDT

21

Persistent Data Types
- drop-in replacement for (part of) JDK

 e.g., string, native array, map.

Implementation

Persistent vs Volatile data types (YCSB-A)

Takeaway:
- around 50% slower than volatile data types on DRAM

Low-level interface

22

- unsafe.{pwb,pfence, psync}
- NVMM block allocator
- recovery time GC (à la Makalu)
- validation = 1 bit in object header

- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery

to reclaim reachable invalid objects

List<Account> a = randAcc(100);
Bank b = new Bank(a);
root.put(“Bank”, b);
b.validate();

aroot

Implementation

Low-level interface

22

List<Account> a = randAcc(100);
Bank b = new Bank(a); //Not atomic
root.put(“Bank”, b);
b.validate();

b aroot
- unsafe.{pwb,pfence, psync}
- NVMM block allocator
- recovery time GC (à la Makalu)
- validation = 1 bit in object header

- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery

to reclaim reachable invalid objects

Implementation

Low-level interface

22

List<Account> a = randAcc(100);
Bank b = new Bank(a);
root.put(“Bank”, b); //Not atomic
b.validate();

broot a
- unsafe.{pwb,pfence, psync}
- NVMM block allocator
- recovery time GC (à la Makalu)
- validation = 1 bit in object header

- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery

to reclaim reachable invalid objects

Implementation

Low-level interface

22

List<Account> a = randAcc(100);
Bank b = new Bank(a);
root.put(“Bank”, b);
b.validate();

b aroot
- unsafe.{pwb,pfence, psync}
- NVMM block allocator
- recovery time GC (à la Makalu)
- validation = 1 bit in object header

- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery

to reclaim reachable invalid objects

Implementation

Outline

23

(1) Introduction
- data persistence
- persistent memory
- NVMM
- why Java?
- prior art
- contribution overview
- demo

(2) System Design of J-NVM
- key idea
- programming model

- persistent objects
- code generator

- J-PFA
- J-PDT

(3) Evaluation
- YCSB benchmark
- recovery

(4) Conclusion

Evaluation

YCSB Benchmark

24

Durable backends for Infinispan:
- PCJ = HashMap from

Persistent Collections Java
(JNI + PMDK)

- FS: ext4-dax

Hardware used:
 4 Intel CLX 6230 HT 80-core
 128GB DDR4,
 4x128GB Optane (gen1)

Takeaways:
- J-NVM up to 10.5x (resp. 22.7x) than FS (resp. PCJ)
- no need for volatile cache

Evaluation

Recovery

25

TPC-B like benchmark
10M accounts (140 B each)
client-server setting
SIGKILL after 1 min

Takeaways:
- J-NVM is more than 5x faster to recover than FS
- no-need for graph traversal in some cases (e.g., only FA blocks)

Evaluation

Conclusion

26

Contribution = J-NVM: off-heap persistent objects

Each persistent object is composed of
- a persistent data structure: unmanaged, allocated off-heap (NVMM)
- a proxy: managed, allocated on-heap (DRAM)

Pros:
- unique data representation (no data marshalling)
- recovery-time GC (not at runtime, does not scale)
- consistently faster than external designs (JNI, FS)

Cons:
- explicit free but common for durable data
- limited code re-use but safer programming model

Contribution

+ automagic tool
+ library ~ no runtime changes

Conclusion

26

Related Work

Related Work
- Persistence History
- Early PMEM
- NVMM challenges
- NVMM Programming abstractions
- Persistence in Java
- NVMM in Java

Big summary table p.100:
Synoptic view
& J-NVM positioning

Future work

26

Closing

- Data interoperability
- Test tools
- Killer App:

- NVMM use for serverless apps (FaaS)

Outline

27

(1) Introduction
- data persistence
- persistent memory
- NVMM
- why Java?
- prior art
- contribution overview

(2) System Design of J-NVM
- demo
- key idea
- programming model

- persistent objects
- code generator

- J-PFA
- J-PDT

(3) Evaluation
- YCSB benchmark
- recovery

(4) Conclusion

J-NVM

