TELECOM
SudParis

m
@lp PARIS
A Support for Persistent Memory in Java

Anatole Lefort

Advisors: Pierre Sutra, Gael Thomas

Télécom SudParis
Institut Polytechnique de Paris

Ph.D. Defense — Mar. 24th, 2023

TELECOM
SudParis

m
':O;IP PARIS
A Support for Persistent Memory in Java

Anatole Lefort

Advisors: Pierre Sutra, Gael Thomas

Télécom SudParis
Institut Polytechnique de Paris

Ph.D. Defense — Mar. 24th, 2023

Data Persistence

Computer programs deal with two kinds of data.

- Limited Lifetime: renewed at every program execution.
- do not survive crashes.
- hosted in

- Persistent:
- Extended Lifetime: recalled and reused in subsequent executions.
- remain consistent even in the wake of a failure.
- hosted on Storage Devices

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks
- resist reboots, power loss
- at least TBs
- 200us-15ms

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

DRAM

Common media: HDD, Flash disks

- resist reboots, power loss DRAM

- at least TBs —

- 200us-15ms CPU

DRAM

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

DRAM

Common media: HDD, Flash disks

- resist reboots, power loss DRAM

- at least TBs —

- 200us-15ms CPU

DRAM

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

DRAM

Common media: HDD, Flash disks

- resist reboots, power loss DRAM

- at least TBs —

- 200us-15ms CPU

DRAM

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

DRAM

Common media: HDD, Flash disks

- resist reboots, power loss DRAM

- at least TBs —

- 200us-15ms CPU

DRAM

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

DRAM

Common media: HDD, Flash disks

- resist reboots, power loss DRAM

- at least TBs —

- 200us-15ms CPU

DRAM

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks

- resist reboots, power loss

- at least TBs

- 200us-15ms CPU

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks

- resist reboots, power loss

- at least TBs

- 200us-15ms CPU

1 - Dual data representation
2 - Expensive I/Os

Data Persistence

“Persistence is the ability of data to outlive the instance of a program”

“Data remain persistent for the extent of time during which they may be recalled
and used by a program”

Common media: HDD, Flash disks

- resist reboots, power loss

- at least TBs

CPU

- 200us-15ms

1 - Dual data representation
2 - Expensive I/Os BN

1 - Keep data consistent across media
2 - Trade durability guarantees for performance

Complex Software

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

CPU

1 - Dual data representation
2 - Expensive I/Os

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?
1- add PMEM DIMM

CPU

1 - Dual data representation
2 - Expensive I/Os

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

CPU-attached persistent media

1 - Dual data representation
2 - Expensive I/Os

CPU

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

2- move persistent data

1 - Dual data representation
2 - Expensive I/Os

CPU

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

disks become redundant

1 - Dual data representation
2 - Expensive I/Os

CPU

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

3- no more disk I/Os

CPU

(Persistent)

1 - Dual data representation

2—ExpensivetOs

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

4- working copy of data is durable

CPU

(Persistent)

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

What changes with PMEM ?

< PMEM
i CPU
(Persistent) :
1+—Dual-datarepresentation > 1 - Single data representation
2—ExpensivetOs 2 - Direct access

Persistent Memory (PMEM)

PMEM: A memory device on which data survives power cycles.

Benefits

1- No more (un)marshalling
<> PMEM 2- No need for data caching
3- Faster recovery
Fevr o —_—_—_— N 4- Lower software complexity

CPU

(Persistent)

1+—Dual-datarepresentation > 1 - Single data representation
2—ExpensivetOs 2 - Direct access

Non-volatile main memory (NVMM) Background

new persistent medium (in-between SSD and DRAM)

Durable
resists reboots, power loss

High-density
smallest DIMM = 128 GB
up to 8x DDR4 capacity

Byte addressable
persistent memory abstraction

Intel Optane PMEM, 2019

High-performance
low latency (seq. read/write ~ 160/90ns)
high bandwidth (up to 8.10GB/s, 2nd gen)

Non-volatile main memory (NVMM)

Non-volatile main memory (NVMM)

Direct byte-addressability of durable data

Non-volatile main memory (NVMM) Background

Direct byte-addressability of durable data

e — ———
L]

Dramatic throughput and latency
improvement for persistent data applications

e

Simpler code bases with single data
representation and no file I/Os

NVMM - Usage Background

How do we use it ? Storage device compatibility mode (1) ? Persistent Memory (2) ?

(1) File system interface
open/close/read/write/sync

(2) Direct memory access
mmap

Intel Optane PMEM, 2019

NVMM - Usage Background

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface
open/close/read/write/sync

Volatile mmm NullFS &2 TmpFS FS

)
(=3
(=]

OO

TOZ0Z02

—_ =
(=] wul
[« (=)

3]

XX

Completion
time (s)

[®A]
(==}

OO

PRRRARISTTTTRY

ROOOSOOO]
X

K

o

2 3 4 S 6) 8 9 10
Record size (KB)

Varying record size in YCSB-F.

NVMM - Usage

Background

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface

Volatile mmm NullFS B2 TmpFS E3 FS

)
(=3
(=]

g 3 %
= » RS 1] o
2% = K o K
2.2 100 K i & I
g E & I K K K 4
SR b K] K 1 o g
50 I % K 2 o 4
‘] E 1

0 <0 0 Sk B ENE ShE RN S

2 3 4 5 6 2 8 9 10

Record size (KB)

Varying record size in YCSB-F.

- Disabling durability significantly boost performance
- Dummy file systems are seemingly identical to a PMEM FS

NVMM - Usage

How do we use it ? Storage device compatibility mode (1) ?

(1) File system interface
Software Bottlenecks:

- dual representation
(consistency)
- cost of marshalling

Volatile mmm NullFS B2 TmpFS E3 FS

)
(=3
(=]

Completion
time (s)
— —
(93] o ul
o B ©
.' ¥ ’.’.’ Q.
POOOSDEEN]

o

IR RIIRRRRRRX]
[l % %% % %% %% %% % % %%

—_
(3]

W

~

(O %% % %% %!
(@)}

~

o0

O

o 7

Record size (KB)

Varying record size in YCSB-F.

- Disabling durability significantly boost performance
- Dummy file systems are seemingly identical to a PMEM FS

NVMM - Usage Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

NVMM - Usage Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access
mmap
+ memory load/store CPU instructions

(Persistent)

CPU

(Volatile)

NVMM - Usage Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access

(Persistent)
mmap
. . NVMM
+ memory load/store CPU instructons) S—
DRAM
,
| imc }
l DRAM
L112 L112 DRAM

,—

Core] [Core CPU

(Volatile)

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)

+ memory load/store CPU instructions

data update path
1- pull data in CPU caches

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)
+ memory load/store CPU instructons) S—
data update path ™
[imc }

2- update data in CPU caches first,

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)

+ memory load/store CPU instructions

data update path

e
NVMM version becomes stale [L3

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)
. . NVMM
+ memory load/store CPU instructons L _<f ________
data update path ' \
’—-[iMC |
< L3
3- Hardware dictates when and in which
order data are evicted from caches [L1/2] [L1/2]

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)
. . NVMM
+ memory load/store CPU instructons L _<f ________
data update path ' \
[imc }
-
[L1/2] [L1/2]
4- update eventually reaches NVMM)
[Core] [Core CPU
\, J

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)
+ memory load/store CPU instructons) S—
data update path ™
[imc }

Is it always safe to recover (<) after a crash ?
How to keep data crash-consistent ?

'
Version in caches (<) diverged from NVMM (<>) [

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

(Persistent)
. . NVMM
+ memory load/store CPU instructons -
data update path ' \
[imc }
Version in caches (<) diverged from NVMM (<>) [
Is it always safe to recover (<) after a crash ? =~ =
How to keep data crash-consistent ? [L1/2] [L1/2]
N
. - . [Core J [Core CPU
+ special flush/fence CPU instructions \ 2 J

(manually control cache line eviction order)

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

+ memory load/store CPU instructons -
data update path ' e ™
i J
Version in caches (<) diverged from NVMM (<>) [
L3
Is it always safe to recover (<) after a crash ? =~
How to keep data crash-consistent ? [L1/2] [L1/2]
N
. - . [Core J [Core CPU
+ special flush/fence CPU instructions \ 2 J

(manually control cache line eviction order)

= TJoo low-level programming
= Birittle reasoning about crash-consistency

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

+ fitting programming abstractions (e.g. Intel's PMDK)
= ensure data crash-consistency
= aid data recovery

NVMM - Usage Background

How do we use it ? Persistent Memory (2) ?

(2) Direct memory access ~ the easy way
mmap
+ fitting programming abstractions (e.g. Intel's PMDK)
= ensure data crash-consistency
= aid data recovery

challenges:
__support for failure-atomicity abstractions ?
__ persistent memory allocator ?
__persistent pointers in ephemeral process address space ?

NVMM - Usage

How do we use it ? Persistent Memory (2) ?

+ fitting programming abstractions (e.g. Intel's PMDK)
= ensure data crash-consistency
= aid data recovery

challenges:

Language-level NVMM programming help & support

Why Java? - greatest programming language (seriously) Background

Managed language - first released in the 90s - still an industry standard.

Many data stores & processing frameworks:
- Spark, Hadoop, Kafka, Flink, Cassandra, HBase, Elasticsearch, etc.

SﬁAar‘,\Z katka ‘ eIastEearch

‘ﬁEZaZaZazal

Why Java? - (lack of) NVMM support

Nearly all NVMM libraries and tools support only native code (C, C++)

Lack of efficient interfaces :
(1) File System [ext4-dax]
- Storage device compatibility mode (cf. slide 6)

(2) Intel’s PMDK through the Java Native Interface (JNI) [PCJ]
- native library with compatibility layer
slower than FS on YCSB benchmark (cf. evaluation)

Problem statement: No Java-native NVMM interface

Prior art: internal design Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
= extend JVM to manage persistent memory

10

Prior art: internal design Motivation

= [Espresso, AutoPersist, go-pmem]

Managed persistent Java objects
= extend JVM to manage persistent memory

160 - CPU compute time —
CPU GC time =3
10 [T g 120 completiontime X
£
10% I S 80 -
g
1% =
b :I* complie | ol
|
0 10 20 30 0
. . . 030 0.59 1.18 237 474 948 18.96 37.92 75.84 151.68
Completion time (min)
Persistent dataset size (GB)
Exp1: Varying cache ratio Exp2: Increasing dataset
(YCSB-F, Infinispan with 80GB dataset) (YCSB-F, go-pmem)

GC cost outweighs the benefits of large DRAM caches

10

Prior art: internal design

Features

- Garbage collectors do not scale to large persistent datasets

| managed persistent objects

non-scalable

heavily-modified JVM

10

Prior art: internal design

Features

- Garbage collectors do not scale to large persistent datasets

| managed persistent objects

- No dedicated persistent types
In [go-pmem]: “as the applications become complicated

non-scalable

heavily-modified JVM

it becomes increasingly difficult to keep track of exactly
which variables and pointers are in persistent memory”.

—orthogonal persistence
(pnew, @persistentRoot)

10

Prior art: internal design

Features

- Garbage collectors do not scale to large persistent datasets

| managed persistent objects

- No dedicated persistent types
In [go-pmem]: “as the applications become complicated

non-scalable

/

it becomes increasingly difficult to keep track of exactly
which variables and pointers are in persistent memory”.

- Heavy runtime dynamic instrumentation
code instrumentation = 51% slower in [Autopersist]
up to 48% slower in our (non-instrumented) eval.

—orthogonal persistence
(pnew, @persistentRoot)

failure-atomic blocks

10

Contribution Overview

J-NVM - Off-Heap Persistent Objects

Challenges

_(1) single data representation

(3) crash-consistency

(4) object-oriented idioms
(5) explicit persistent types

(6) persistent memory management
with low overhead and scalable to large heaps

11

Contribution Overview

J-NVM - Off-Heap Persistent Objects

Challenges

_(1) single data representation

(3) crash-consistency

(4) object-oriented idioms
(5) explicit persistent types

(6) persistent memory management
with low overhead and scalable to large heaps

Features

(1, 6) off-heap persistent objects

(3) failure-atomic blocks + fine-grained

(4) persistent java objects + PDT library

(5) class-centric model
+ code generator

(6) recovery-time GC (no online GC)
explicit free()

11

Demo - the application J-NVM

A Simple Bank:

Server Bank Account

-accounts: Map<String, Account> -id: Integer
-balance: |.ong

+performTransfer(String from, String to, long amount)

+createAccount(String id, long initialDeposit) +transferTo(Account dest, long amount)

12

Demo - It’s showtime !

anatole@latitude ~/Documents/phd/jnvm-demo $ git checkout jnvm-variant |Transferring $13966 from 20796 to 25979 ... OK
Switched to branch 'jnvm-variant' |Transferring $807 from 19797 to 17432 ... 0K
Your branch is up to date with 'origin/jnvm-variant'. |Transferring $26127 from 13282 to 14515 ... OK
anatole@latitude ~/Documents/phd/jnvm-demo $ mvn clean install -Dmaven.test.sk|Transferring $20891 from 15389 to 16612 ... OK
ip=true |Transferring $19731 from 25022 to 30933 ... OK
[INFO] Scanning for projects... |Transferring $465 from 16948 to 163 ... OK
[INFO] |Transferring $14739 from 27212 to 31897 ... OK
[INFO] |Transferring $21187 from 19167 to 6331 ... OK
- |Transferring $29329 from 2542 to 5080 ... 0K
[INFO] |Transferring $22303 from 7180 to 7857 ... OK
[INFO]] |Transferring $11984 from 3348 to 31671 ... OK
= |Transferring $31963 from 11914 to 5062 ... OK
[INFO] |Transferring $2761 from 16502 to 10200 ... OK
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ jnvm-demo =--- |Transferring $8826 from 14802 to 5272 ... OK
[INFO] Deleting /home/anatole/Documents/phd/jnvm-demo/target |Transferring $16226 from 11690 to 12212 ... OK
[INFO] |Transferring $13410 from 24774 to 27075 ... OK
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ jnvm-dem|Transferring $18111 from 19755 to 3585 ... OK
0 === | Transferring $31013 from 13963 to 26681 ... OK
[INFO] Using 'UTF-8' encoding to copy filtered resources. |Transferring $12863 from 31762 to 15588 ... OK
[INFO] Copying 1 resource |Transferring $8349 from 31501 to 13823 ... OK
[INFO] |Transferring $28289 from 20578 to 12931 ... OK
[INFO] --- maven-compiler-plugin:3.6.1:compile (default-compile) @ jnvm-de -|Transferring $5633 from 9057 to 21579 ... OK
-- i $15372 from 18749 to 27620 ... OK
| ing $30340 from 29898 to 25940 ... OK

$18655 from 11866 to 3223 ... OK

$1096 from 22652 to 29958 ... OK
Transferring $20332 from 19758 to 10406 ... OK
Transferring $16902 from 14992 to 26568 ... 0K
Transferring $23650 from 17869 to 25875 ... OK
|Transferring $28326 from 26926 to 4780 ... OK
Transferring $18147 from 20449 to 10147 ... OK
Transferring $8875 from 20751 to 117 ... 0K
Transferring $13754 from 28717 to 30340 ... OK
|Transferring $29041 from 18920 to 26579 ... OK
|Transferring $12721 from 10616 to 12903 ... 0K
Transferring $7333 from 17624 to 5286 ... OK
Transferring $7783 from 1402 to 18889 ... 0K
Transferring $11376 from 30535 to 19655 ... OK
Transferring $25517 from 13929 to 4160 ... OK
Transferring $20489 from 24523 to 4418 ... OK
|Transferring $26339 from 6499 to 10304 ... OK
Transferring $31357 from 3044 to 13741 ... OK
Transferring $28362 from 22548 to 30334 ... OK~C
anatole@latitude ~/Documents/phd/jnvm-demo $./bin/client.sh total
(¢]

|anatole@latitude ~/Documents/phd/jnvm-demo $

[4] 0:java* "latitude" 14:04 03

https://asciinema.org/a/499292
https://asciinema.org/a/499292

Outline

J-NVM

Introduction

data persistence
persistent memory
NVMM

why Java?

prior art

contribution overview

(2)

(3)

(4)

System Design of J-NVM

demo
key idea
programming model

persistent objects
code generator

J-PFA
J-PDT

Evaluation

YCSB benchmark
recovery

Conclusion

14

Overview

J-NVM = Off-Heap Persistent Objects

Key idea
each persistent object is decoupled into

- apersistent data structure: unmanaged, allocated off-heap (INVMIV)

- aproxy: managed, allocated on-heap ()

15

Programming model - persistent objects

Persistent object is (DRAM)
- a persistent data structure
- holds object fields \
- aproxy \ """"""""""""""""
- holds object methods IR (NVMM)
- implements PObject interface |
- intermediates access to pers. data structure) 7
- instantiated lazily (low GC pressure)
Alive when reachable (from persistent root) Map = INVM.root();
Bank b = .get(“Bank”);
Account a = b.find(“toto”);

Class-centric model _setBalance(42);
- safe references thanks to the type system

16

Programming model - life cycle Sys Design

Constructor Account a2 = new Account(“toto”, 42);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ...
(NVMM)

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account a2 = new Account(“toto”, 42);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ...
(NVMM)

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account a2 = new Account(“toto”, 42);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ...
Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account a2 = new Account(“toto”, 42);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() L.
Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account 2 = bank.find(“toto”);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() /L
Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM "N
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account 2 = bank.find(“toto”);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() /L
Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM "N
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor Account 2 = bank.find(“toto”);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() /L .
Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor INVM. free(2a);
- allocate NVMM
- attach persistent data structure
(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ..

Destructor (NVMM)
- explicit JNVM.free() to reclaim NVMM
- detach proxy 42

- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor INVM. free(2a);
- allocate NVMM
- attach persistent data structure
(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ..

(NVMM)

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor INVM. free(2a);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ..
(NVMM)

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

17

Programming model - life cycle Sys Design

Constructor INVM. free(2a);
- allocate NVMM
- attach persistent data structure

(DRAM)
Re-Constructor
- re-attach proxy
- re-build soft state via resurrect() ..
(NVMM)

Destructor
- explicit JNVM.free() to reclaim NVMM
- detach proxy
- ready to be GCed

17

Overview

J-NVM = Off-Heap Persistent Objects

Tooling
- built-in off-heap memory management for NVMM
- code generator: automatic decoupling for POJOs
- J-PFA: automatic failure-atomic code
- J-PDT: data types + collections for persistent memory
- low-level API (for experts)
- recovery-time GC

18

Programming model - code generator

Goals
1 compute class-wide off-heap layout @Persistent(fa="non-private”)
2 replace (non-transient) field accesses class Account {
3 generate constructor, re-constructor PString name:
4 FA-wrap non-private methods & ?

int balance;
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

}

void transferTo(Account dest, int amount) {
this.balance -= amount;
dest.balance += amount;

}
}

Programming model - code generator

Goals
1 compute class-wide off-heap layout @Persistent(fa="non-private”)
2 replace (non-transient) field accesses class Account {
3 generate constructor, re-constructor PString name:
4 FA-wrap non-private methods & ?

int balance;
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

}

void transferTo(Account dest, int amount) {
this.balance -= amount;
dest.balance += amount;

}
}

Programming model - code generator

Goals
(1) compute class-wide off-heap layout @Persistent(fa="non-private”)
class Account {
PString name;
int balance;
transient int y;

Account(String name, int balance) {

(DRAM) this.name = new PString(id);
this.balance = balance;
addr y
}
void transferTo(Account dest, int amount) {
(PMEM) this.balance -= amount;
16 20 dest.balance += amount;
}

name bal.
}

Programming model - code generator

Goals

// transformed code (decompiled)
(a) remove persistent attributes class Account {

transient int y;

Account(String name, int balance) {

(DRAM) this.name = new PString(id);
this.balance = balance;
addr y
¥
void transferTo(Account dest, int amount) {
(PMEM) this.balance -= amount;
16 20 dest.balance += amount;
name | bal. }
............. }

19

Programming model - code generator

Goals

// transformed code (decompiled)
class Account {

long addr; // persistent data structure
transient int y;

(b) add “addr” field

Account(String name, int balance) {

this.name = new PString(id);

(DRAM) this.balance = balance;

}

addr y
_____________________ void transferTo(Account dest, int amount) {

this.balance -= amount;
(PMEM) dest.balance += amount;

16 20 }

name bal. }

Programming model - code generator

Goals
// transformed code (decompiled)
class Account {
(c) generate or transform field getters/setters long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

// transformed code (continued)
PString getName() {
return JNVM.readPObject(addr, 0); }

}

protected void setName(PString v) { void transferTo(Account dest, int amount) {
JNVM.writePObject(addr, 0, v); this.balance -= amount:
*)

} dest.balance += amount;

int getBalance() { }

return JNVM.readInt(addr, 8);
}
void setBalance(int v) {
IJNVM.writeInt(addr, 8, v);

}

Programming model - code generator

Goals

(c) generate or transform field getters/setters

// transformed code (continued)
PString getName() {
return JNVM.readPObject(addr, 0);
}
protected void setName(PString v) {
JNVM.writePObject(addr, 0, v);

}

int getBalance() {
return JNVM.readInt(addr, 8);
}
void setBalance(int v) {
IJNVM.writeInt(addr, 8, v);

}

// transformed code (decompiled)

class Account implements PObject {
long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

}

void transferTo(Account dest, int amount) {
this.balance -= amount;
dest.balance += amount;

}

1- Use JINVM static helpers

19

Programming model - code generator

Goals

(c) generate or transform field getters/setters

// transformed code (continued)
PString getName() {
return JNVM.readPObject(addr, 0);
}
protected void setName(PString v) {
JNVM.writePObject(addr, 0, v);

}

int getBalance() {
return JNVM.readInt(addr, 8);
}
void setBalance(int v) {
JNVM.writeInt(addr, 8, v);

}

// transformed code (decompiled)

class Account implements PObject {
long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

}

void transferTo(Account dest, int amount) {
this.balance -= amount;
dest.balance += amount;

}

1- Use INVM static helpers with field offsets

19

Programming model - code generator

Goals

(c) generate or transform field getters/setters

// transformed code (continued)
PString getName() {
return JNVM.readPObject(addr, 0);
}
protected void setName(PString v) {
JNVM.writePObject(addr, 0, v);

}

int getBalance() {
return JNVM.readInt(addr, 8);
}
void setBalance(int v) {
IJNVM.writeInt(addr, 8, v);

}

// transformed code (decompiled)

class Account implements PObject {
long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.name = new PString(id);
this.balance = balance;

}

void transferTo(Account dest, int amount) {
this.balance -= amount;
dest.balance += amount;

}

1- Use JINVM static helpers with field offsets
2- internal setter for final fields

19

Programming model - code generator

Goals

(2)

replace (non-transient) field accesses

// transformed code (decompiled)
class Account implements PObject {

long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.setName(new PString(id));
this.setBalance(balance);

}

void transferTo(Account dest, int amount) {
this.setBalance(getBalance() - amount);
dest.setBalance(dest.getBalance() + amount);

}

19

Programming model - code generator

Goals

(3) generate constructor, re-constructor

// transformed code (continued)
Account(long addr) {
this.addr = addr;
this.resurrect();

}

// transformed code (decompiled)
class Account implements PObject {

long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
this.addr = JNVM.alloc(getClass(), size());
this.setName(new PString(id));
this.setBalance(balance);

}

void transferTo(Account dest, int amount) {
this.setBalance(getBalance() - amount);
dest.setBalance(dest.getBalance() + amount);

}

19

Programming model - code generator

Goals
// transformed code (decompiled)

class Account implements PObject {
long addr; // persistent data structure
transient int y;
(4) FA-wrap non-private methods

Account(String name, int balance) {
JNVM. faStart();
this.addr = JNVM.alloc(getClass(), size());
this.setName(new PString(id));
this.setBalance(balance);
INVM. faknd();

}

void transferTo(Account dest, int amount) {
JNVM. faStart();
this.setBalance(getBalance() - amount);
dest.setBalance(dest.getBalance() + amount);
INVM. faknd();

}

19

Programming model - code generator

Tool implementation

%

1
2

|

Bytecode-to-bytecode transformer
post-compilation Maven plugin

// transformed code (decompiled)

class Account implements PObject {
long addr; // persistent data structure
transient int y;

Account(String name, int balance) {
JNVM. faStart();
this.addr = JNVM.alloc(getClass(), size());
this.setName(new PString(id));
this.setBalance(balance);
INVM. faknd();

}

void transferTo(Account dest, int amount) {
JNVM. faStart();
this.setBalance(getBalance() - amount);
dest.setBalance(dest.getBalance() + amount);
JNVM. faknd();

}

19

J-PFA

Automatic crash-consistent update
usage = JNVM.faStart() some code JNVM.faEnd()

Per-thread persistent redo-log (inspired by Romulus)

Log new, free and updates

Do not log updates to “new” persistent objects
(e.g. allocated within the FA-block)

20

J-PDT Implementation

Persistent Data Types
- drop-in replacement for (part of) JDK
e.g., string, native array, map.

o VAT read &3 gc X1

% 12 update = execution [Z7J

g 10 | Volatile J-PDT

= sf \ /

g o -

| — /// /] <
L .

S A -

Blackhole HashMap TreeMap SkipListMap

Persistent vs Volatile data types (YCSB-A)

Takeaway:
- around 50% slower than volatile data types on DRAM

21

Low-level interface

- unsafe.{pwb,pfence, psync}

- NVMM block allocator root

- recovery time GC (a la Makalu) \

- validation = 1 bit in object header \ ---------------------------------------
- makes atomic reclamation easier \

- allows deferring object liveness
- interpreted on recovery \,
to reclaim reachable invalid objects

v

List<Account> = randAcc(100);

Low-level interface

- unsafe.{pwb,pfence, psync}
- NVMM block allocator root b a
- recovery time GC (a la Makalu)

- validation = 1 bit in object header
- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery
to reclaim reachable invalid objects

Bank b = new Bank(a); //Not atomic

22

Low-level interface

- unsafe.{pwb,pfence, psync}
- NVMM block allocator root b a
- recovery time GC (a la Makalu)

- validation = 1 bit in object header
- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery
to reclaim reachable invalid objects

root.put(“Bank”, b); //Not atomic

22

Low-level interface

- unsafe.{pwb,pfence, psync}
- NVMM block allocator
- recovery time GC (a la Makalu)

- validation = 1 bit in object header
- makes atomic reclamation easier
- allows deferring object liveness
- interpreted on recovery
to reclaim reachable invalid objects

b.validate();

22

Outline Evaluation
(1) Introduction (2) System Design of J-NVM
- data persistence key idea
- persistent memory programming model
- NVMM persistent objects
code generator
. ?
why Ja\t'a' J-PFA
poran . - J-PDT
- contribution overview
- demo
(3) Evaluation
- YCSB benchmark
- recovery
(4) Conclusion

23

YCSB Benchmark

J-PDT

600
500
2 400
. 300
200
100

Throughput
(Kops/s)

Takeaways:

- J-NVM up to 70.5x (resp. 22.7x) than FS (resp.

J-PFA =3

Eo

== PC] mmm

LM_

- no need for volatile cache

Durable backends for Infinispan:
- PCJ = HashMap from
Persistent Collections Java
(JNI + PMDK)
- FS: ext4-dax

Hardware used:
4 Intel CLX 6230 HT 80-core
128GB DDR4,
4x128GB Optane (gen1)

PCJ)

24

Recovery Evaluation

J-PFA-nogc = J-PFA —o— FS —— Volatile -=—
14

TPC-B like benchmark
= M2 10M accounts (140 B each)
2 10 client-server setting
2 g SIGKILL after 1 min
B o
=
g 4
& 2

i ,
0 20 40 60 80 100 120
Time (s)
Takeaways:

- J-NVM is more than 5x faster to recover than FS

- no-need for graph traversal in some cases (e.g., only FA blocks)
25

Conclusion

Contribution = J-NVM: off-heap persistent objects

Each persistent object is composed of

- a persistent data structure: unmanaged, allocated off-heap (NVMM)

- a proxy. managed, allocated on-heap (DRAM)

Pros:
- unique data representation (no data marshalling)
- recovery-time GC (not at runtime, does not scale)
- consistently faster than external designs (JNI, FS)

Cons:
- explicit free but common for durable data
- limited code re-use but safer programming model

+
+

automagic tool
library ~ no runtime changes

26

onclusion Related Work

[Support T Failure-atomicity I Applicability I Efficiency
Model type Language Tmpl. Granu. Persistency Static FASE PDT | Dual Marsh. | NVM Heap Heap Recovery
R I d W k types I rep. | perf. mgmt size
elated Wor T o G
. . Ext4-DAX [2] fi tem any user page imm. no no no yes yes - N/A N/A -
- Persistence H|St0ry NOVA [331] file system i CoW pegs {man. /Buff. no no mo | yes yes — N/A N/A [
Mashona [156] library Java (native) | append word imm. no no no yes yes - N/A N/A -—-
- Early PMEM Peratatent data fype (§2.7.0)
_ NVM M Cha”en es SOFT [353] | data type Ct++ [Tog-free op. d. lin. [yes no ves. no no F++ +++ F++ +]
g l-purp ions (§2.7.2)
- NVM M Prog ramm | ng abStraCtionS Capsules [57] method C++ dual-copy+CAS word detect. rec. no no user | yes no o+ N/A N/A +++
RECIPE [207] method O++ log-free op. imm. no no user [no no ++ N/A N/A +++
H . PMwCAS [314] method +library C++ log-free word imm.+linea. | no no user | no mno ++ N/A N/A +++
- PerSIStenCG In Java MOD [158] method{data types C++ shadow pag.+CAS op. imm. no no yes no no ++ N/A N/A +++
. NVTraverse [139] | method - library Ct++ log-free op. d. lin. no no user | no mno ++ N/A N/A +++
- NVMM 8] Java PRONTO [231] library Ct++ sem. log+chkpt. op. d. lin. no ves no yes no ++ N/A N/A -
CX-PUC [103] library C++ 2N replicas+CAS object d. lin. yes yes no no mo + ++ ++ +++
Montage [318] library C++ CoW +epoch reclam. payload! buff. d. lin. yes yes no no mo +++ +++ +4++ ++
Mirror [140] library C++ log-free atomics word d. lin. yes no ves yes no +++ +++ +++ +
PREP-UC [93] library CH++ 2 replicas+ sem. log cache® (buff.) d. lin. | yes yes no yes no ++ +++ ++ ++
. Tracking [52] method C++ log-free op. detect. rec. no no user | no no ++ N/A N/A +++
B g S u m m a rv ta b I e D 1 00 b PCOMB [130] method unspe. CoW-+CAS object detect. rec. no no user | no no +++ ++ +++ +++
- - ResPCT [192] library (e} InCLL(undo+epoID) epoch buff. d. lin. yes yes no no no ++++ ++ ++ +++
Synoptic view E C [memory G273
Romulus [102] library C++ dual-copy +vola. redo word d. lin. ves ves no no mo + +++ ++ e
& J_NVM pOSitiOI’] | ng OneFile [266] library C++ redo word d. lin. ves yes no no no + ++ +++ +4++
Redo-PTM [103] | library C++ N + 1 replicas+CAS word d. lin. yes ves no no no + ++ ++ +++
Crafty [142] library [¢] undo word buff. no yes no no mo N/A ++ +++ +++
Persistent heap managers (§2.7.5, §2.8.3, §2.8.4)
Mnemosyne [309] | library compiler Cor C++ redo word imm. /buff. no ves no no no E ++ +++ +++
Atlas [83] library +compiler (o] undo word buff. no ves no no no + ++ +++ +++
PMDK [19] library C & C++ undo object imm. yes yes no no no + + +++ +++
NVthreads [167] | library d CoW +redo page buff. no yes no no mo N/A ++ +++ ++
NV-heaps [92] library C++ undo object d. lin. yes ves no no mo N/A ++ +++ +++
Makalu [63] library (allocator) (o] undo 16B imm. no no no no no + ++ +++ ++
Ralloc [76] library (allocator) C++ user 8B recoverable no no no no no +++ +++ + 4+ + ++
PCJ [16] library Java (JNI) undo object imm. yes yes ves yes yes -—= -—- +++ +++
LLPL [20] library Java (JNI) undo object imm. yes yes no ves yes - -—- +++ +++
MDS [298] library Java (JNI) none cache? flush-on-fail yes ves no no yes - ++ ++ Fop
Espresso [328] compiler-runtime Java (native) | undo word imm. no yes no no no + + ——— +
AutoPersist [287] | compilerruntime Java (native) | undo word imm. no yes no no mo - - -—- +
Go-PMEM [143] | compiler | runtime Go undo word imm. no yes no no mo + + -=- +
This thesis (§4.3, §4.5, §4.6)
J-NVM [209] library Java (native) | user user user yes ves ves no mo T+ +++ +++ +++
J-PDT [209] library Java (native) | log-free word imm. ves ves ves no mo +++ +++ +++ ++
J-PFA [209] library Java (native) | redo block imm. yes yes yes no mno ++ +++ +++ +++

Table 2.4: Comparison of various NVMM programming support libraries and systems.

!payload: NVMM allocation payloads returned by the allocator.
2cache: the whole CPU cache hierarchy is invalidated and flushed to (persistent) memory.

26

Future work Closing

- Data interoperability
- Test tools
- Killer App:
- NVMM use for serverless apps (FaaS)

26

Outline

J-NVM

Introduction

data persistence
persistent memory
NVMM

why Java?

prior art

contribution overview

System Design of J-NVM

demo
key idea
programming model

persistent objects
code generator

J-PFA
J-PDT

Evaluation

YCSB benchmark
recovery

Conclusion

27

