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Abstract
This paper presents J-NVM, a framework to access efficiently

Non-Volatile Main Memory (NVMM) in Java. J-NVM of-

fers a fully-fledged interface to persist plain Java objects

using failure-atomic blocks. This interface relies internally

on proxy objects that intermediate direct off-heap access to

NVMM. The framework also provides a library of highly-

optimized persistent data types that resist reboots and power

failures. We evaluate J-NVM by implementing a persistent

backend for the Infinispan data store. Our experimental re-

sults, obtained with a TPC-B like benchmark and YCSB, show

that J-NVM is consistently faster than other approaches at

accessing NVMM in Java.
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1 Introduction
Many modern data stores and big data analytics platforms

are written in Java [8, 9, 16, 32, 45, 58, 64, 68]. Because they

manipulate large amount of persistent data, these systems

can greatly benefit from the recent technological advances

in Non-Volatile Main Memory (NVMM) [25]. Unfortunately,

to date, accessing efficiently NVMM from the Java language

is still an open challenge.

To access NVMM from Java, two designs exist so far. With

the external design, NVMM remains outside the Java heap.

The Java virtual machine (JVM) accesses it through a file

system [30, 34, 67], or using the Java native interface (JNI)

[46, 48]. This design is inefficient due to the cost of convert-

ing data back and forth between the NVMM and the Java

representations. With the integrated design, the JVM stores

plain Java objects in NVMM and the application directly ac-

cesses them with read and write instructions [59, 66]. While

this design avoids the conversion cost, it also has a funda-

mental flaw: the JVM has to run a garbage collector (GC) in

NVMM because it now contains Java objects.

Collecting a dataset at the scale of NVMM, that is hun-

dreds of GBs to TBs, is expensive.
1
For instance, we show in

§2.2.1 that collecting just 80 GB divides the completion time

by 3. Moreover, persistent and volatile objects have differ-

ent life cycles. Applications often contain many allocation

and deletion sites for volatile objects. On the contrary, the

deletion of a persistent object is often related to a specific

event, e.g. discarding a tuple in a relational database. Such

events are rare, explicit, and trigger well-defined paths in the

application. As we confirm in §2.2.2, this makes the number

of deletion sites small, and thus the use of a GC for NVMM

superfluous.

To remedy these problems, we propose a direct NVMM

access, as with the integrated design, but without collect-

ing persistent objects at runtime. Implementing this design

is challenging because the Java language was designed for

garbage-collected objects. To address this challenge, we re-

visit how to manage persistent objects for Java in the NVMM

era. We introduce a decoupling principle between the data

structure of a persistent object and its representation in the

Java world. Based on this principle, a persistent object now

consists of two parts: a data structure stored off-heap in

NVMM, and a proxy that remains in volatile memory. The

data structure holds the fields of the persistent object, while

the volatile proxy provides the methods that manipulate

them. Because we store the persistent data structure outside

the Java heap, using our own memory layout, they are not

collected at runtime. Our design also removes the cost of

converting objects by leveraging a JVM interface that inlines

the low-level instructions that access NVMM directly in the

Java methods.

We implement our decoupling principle in the J-NVM

framework. J-NVM is entirely written in Java and it only

requires the addition of three NVMM-specific instructions to

the Hotspot JVM. Our framework offers to the programmer

a low-level interface that focuses on performance and a high-

level interface that trades performance for usability. The

low-level interface defines the methods that allow a proxy to

access the persistent data structure. The high-level interface

1
The smallest Optane DC holds 128 GB of persistent memory.
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additionally provides failure-atomic blocks, that is blocks of

code executed entirely or not at all [12, 14, 15, 44, 49, 62].

To ease programming, J-NVM includes a code generator

which takes as input a legacy Java class and automatically

decomposes it into a persistent data structure and a volatile

proxy. Our framework also includes the J-PDT library which

contains optimized persistent data structures (e.g., arrays,

maps and trees) implemented directly atop the low-level

library. Internally, these data structures do not rely on failure-

atomic blocks for performance, yet they remain consistent

when a crash occurs.

We evaluate J-NVM with micro-benchmarks and by im-

plementing several persistent backends for the Infinispan

data store [41]. Our evaluation using a TPC-B like workload

[61] as well as YCSB [13] shows that:

• Both the low-level and the high-level interfaces sys-

tematically outperform the external design. In YCSB,

the low-level interface is at least 10.5x faster than us-

ing ext4 atop NVMM or the PCJ library [48], which

relies on the native PMDK library [48], except in a

single case where it is only 3.6x faster.
• While the failure-atomic blocks of the high-level in-

terface offer an all-around solution, J-PDT, with its

hand-crafted persistent data types, executes up to 65%

faster. Compared to a volatile implementation, J-PDT

is only 45-50% slower.

• Integrating NVMM in the language runtime hurts per-

formance due to the cost of garbage-collecting the

persistent objects. For a Redis-like application written

with go-pmem [22], increasing the persistent dataset

from 0.3 GB to 151 GB multiplies the completion time

of YCSB-F by 3.4

In the rest of this paper, we first motivate our program-

ming model and detail its usage (§2). Further, we present the

key building blocks of J-NVM and the low-level interface

(§3). The persistent heap is then detailed, as well as the in-

ternals of the J-PDT library (§4). The evaluation follows (§5).

We then cover the related work (§6) before closing (§7).

2 Programming model
This section presents the programming model of J-NVM and

the rationale behind our design choices.

2.1 Overview
J-NVM decomposes a persistent object into a persistent data

structure and a volatile proxy. Persistent data structures

live in NVMM, outside the Java heap. Proxies are regular

Java objects that intermediate access to the persistent data

structures. They implement the PObject interface, are in-

stantiated on-demand (e.g., when a persistent object is deref-

erenced) and managed by the Java runtime.
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Figure 1. YCSB-F in Java with different cache ratios.

The above decoupling principle avoids running a garbage

collector on persistent objects. Based on it, J-NVM imple-

ments a complete developer-friendly interface that offers

failure-atomic blocks. To construct this interface, J-NVM

reuses ideas and principles proposed in prior works, but as-

sembles them differently. Our framework uses a class-centric

programming model, that is the property of durability is at-

tached to a class, and not to an instance. As common with

prior frameworks (e.g., Thor [35]), a persistent object is live

by reachability from a set of user-defined persistent roots.

J-NVM garbage collects the unreachable persistent objects

at recovery, but avoids running a GC at runtime for perfor-

mance. Instead, objects are explicitly freed by the developer.

In what follows, we present evidences that garbage collect-

ing persistent objects in a data store is not necessary. There

are too few deletion sites in the code base and the existing

GCs do not scale to the size of the persistent dataset. Then,

we further detail our programming model and illustrates its

usage with an example.

2.2 Memory management
Running a GC at runtime has a cost. For volatile objects, this

cost is balanced by the usefulness of the GC: the GC avoids

many bugs and simplifies substantially the code base. This

section shows that this is no more the case with persistent

objects in the context of a data store.

2.2.1 GCOverhead. First, wemeasure the cost of running

a GC at the scale of a large persistent dataset. We consider

G1, the default GC of Hotspot [17], then the tri-color concur-

rent marking algorithm of go-pmem [22], a recent persistent

framework for the Go language.

G1. In this experiment, we evaluate the cost of collecting a

large dataset with a state-of-the-art GC algorithm. We focus

on the performance of a GC for volatile memory, because

GCs for NVMM are not as optimized yet [22]. We evaluate

G1, a modern GC that features many optimizations (gen-

erations, concurrent marking and parallel compaction). In

particular, G1 pauses the application when it compacts the

heap, but bounds the pause time by compacting the regions

that contain more garbage first.

We evaluate G1 when running the YCSB-F workload with

Infinispan. The experiment uses 15Mpersistent objects, which
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Figure 2. YCSB-F in go-pmem [22] when varying the size

of the persistent dataset.

amounts for 15 GB of user data. Infinispan stores these ob-

jects in NVMM through the file system interface (DAX ext4).

The workload is a mix of read and read-modify-write opera-

tions (50/50). In total, 10 threads executes 100M operations.
2

To evaluate the performance of G1, we change the ratio

of volatile cache in Infinispan. Infinispan uses this cache

to avoid costly accesses to the file system. For each ratio,

by testing different sizes, we configure the size of the Java

heap for the best performance (20 GB, 30 GB and 100 GB for

respectively 1%, 10% and 100%).

Figure 1(left) reports the completion time of YCSB-F for

the three cache ratios. With a cache of 100%, the completion

time is roughly multiplied by two. When we analyze this

result, we observe that the compute time alone becomes

better when the cache ratio increases. This is expected: with

a bigger cache, we decrease the number of accesses to the

file system, which boosts performance. However, we also

notice that, when every object is cached, 69% of the time is

spent in GC, erasing the advantage of a larger cache (see

breakdown in Figure 1(left)). This shows that, even with a

modern optimized GC, collecting a large dataset comes at

severe performance cost.

Figure 1(right) indicates that a large heap also significantly

harms performance stability. In this figure, we report the tail

of the latency distribution for the YCSB operations. Above

the 0.9999 percentile (10,000 operations), a small cache of

1% is 50x faster than the largest cache. This experimental

result shows that managing a large heap can additionally

incur rare yet impactful slowdowns.

go-pmem. The go-pmem framework [22] offers access to

NVMM in Go following an integrated design. Its GC collects

jointly the persistent and volatile heaps, using a tri-color

concurrent marking algorithm [18] adapted for NVMM. The

heap is not compacted. It is automatically resized after each

collection. Because of a flaw in the resizing policy, applica-

tions may end with an out of memory error. To avoid this

problem, we force a collection every 10 GB of allocation.

2
The YCSB benchmark is fully detailed in §5.2.

Data store SLOC # sites

infinispan (this paper) 603, 800 4

cassandra-pmem [11] 334, 300 1

pmem-rocksdb [53] 314, 900 4

pmem-redis [52] 55, 900 1

pmemkv [54] 25, 600 2

go-redis-pmem [22] 8, 400 2

pmse (MongoDB)[50] 4, 800 3

Table 1. NVMM-ready data stores rarely delete persistent

objects.

Figure 2 reports the performance of YCSB-F when using

the go-redis-pmem data store. This data store is a feature-

poor version of Redis [57] written by the authors of go-pmem.

We execute the workload of Figure 1 and test different sizes

for the persistent dataset. The black line in Figure 2 shows the

completion time for each run. With a small dataset, YCSB-

F lasts 5 min. The same experiment takes 3.4x more time

(17 min) with a large dataset. To understand this drop of

performance, Figure 2 shows the accumulated time spent by

all the threads in GC (dark gray) and in compute (light gray).

In Figure 2, the compute time is relatively stable. This

is expected since the exact same amount of operations is

executed in each run. However, increasing the size of the

persistent dataset also drastically increases the time spent in

GC. With a small dataset, this time is negligible and accounts

for less than 1% of the total CPU time. This shows that col-

lecting the heap after 10 GB of allocated data is sufficient

for the workload. With the largest dataset, despite that the

number of operations remain the same across all runs, the

CPU time spent in GC reaches 67% of the total time.

This degradation comes from the fact that each GC pass

visits all the persistent objects. As the size of the dataset

increases, so does the cost of this computation. It would be

possible to reduce the time spent in GC by adding more

volatile memory to decrease the collection frequency. Un-

fortunately, this solution is not satisfactory because it just

moves the cost of collecting NVMM from the CPU to the

volatile memory.

2.2.2 Deletion sites. The previous experiment shows that

collecting a large heap has a non-negligible cost. Paying this

cost is only interesting if the GC actually helps the developer,

either by simplifying the code or by avoiding bugs. Table 1

reports the number of deletion sites in several NVMM-ready

data stores. We observe that even for data stores with a

voluminous code base, a handful of deletion sites exists. This

shows that garbage collecting persistent objects at runtime

has a limited interest to ease programming.

From what precedes, we pragmatically consider that the

performance penalty of garbage-collecting NVMM in a data

store outweighs its benefits. This key observation motivates

our design choice, where persistent objects live outside the

Java heap.
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2.3 Data persistence model
J-NVM exposes what we call a class-centric programming

model. With this model, durability is a property attached

to a class: in J-NVM, a class is persistent if and only if it

implements the PObject interface.

On the contrary, AutoPersist [59] and Espresso [66] attach

the durable property to each instance of a class. We call this

approach the instance-centric model. Espresso relies on the

pnew keyword to allocate an instance of a given class directly
in persistent memory. Similarly to Thor [35], AutoPersist

first allocates the object in volatile memory, and once it

becomes referenced by another persistent object, it is moved

to persistent memory.

The instance-centric model is appealing because the pro-

grammer can use the same class to instantiate a volatile or a

persistent object, which is not the case with the class-centric

model. As discussed below, the instance-centric model, how-

ever, raises two fundamental problems.

Reliability. By hiding durability from the type system,

the instance-centric model provides a form of orthogonal

persistence [4]. Hiding durability can be harmful because

neither the developer nor the compiler can easily identify

the persistent state of the application. This problem is also

underlined by George et al. [22]: “as the applications become

complicated it becomes increasingly difficult to keep track

of exactly which variables and pointers are in persistent

memory”. The developer can make mistakes by thinking

that an object resides in persistent memory while it resides

in volatile memory, which leads to data loss [29]. Conversely,

the developer can also move to NVMM more objects than

necessary, leading to memory leaks. Because these bugs only

happen at runtime, identifying them is difficult [12, 37].

The class-centric model of J-NVM decreases transparency

but makes the code clearer and thus less error-prone for the

developer. The type of a variable (or a field) directly indicates

whether it resides in persistent or volatile memory. The class-

centric model trades the code simplicity of the instance-

centric model for better reliability, exactly as a statically-

typed language trades the code simplicity of a dynamically-

typed language for better reliability.

Cross-heap references. The instance-centricmodel raises

a second problem related to the way it manage cross-heap ref-

erences. Such a reference, from the persistent to the volatile

heap can appear because the same class serves to allocate

objects in both persistent and volatile memory. In particular,

a reference stored in NVMM can indifferently refer to a per-

sistent or a volatile object. When a crash occurs, because the

volatile heap is emptied, a cross-reference from persistent

to volatile memory becomes dangling, that is referring to an

invalid location.

AutoPersist avoids cross-references by instrumenting the

code. When the application writes a reference to b in an ob-

ject a, if a is in NVMM and b in volatile memory, AutoPersist

transparently migrates b to NVMM. The code instrumen-

tation in AutoPersist has a non-negligible cost. Even if the

application does not use NVMM, it induces an overhead of

51% (9% with the QuickCheck optimization [60]).

Espresso does not instrument the code to detect cross-

references, thus theymay appear. To deal with them, Espresso

can nullify a dangling reference at recovery. However, this ap-

proach is not satisfying: a dangling reference can appear be-

cause the developer thought erroneously that the referenced

object is persistent, while it is volatile. Instead of silently

losing data, the runtime should provide help to prevent such

situations. Alternatively, Espresso proposes to rely on anno-

tations to prevent cross-references. The type of an annotated

reference becomes incompatible with the type of a volatile

object. This mechanism is similar to a class-centric solution.

J-NVM avoids the problem of cross-references at all by

relying on the class-centric model: an application may store a

reference in NVMM only if the referenced object implements

PObject.

2.4 Liveness by reachability
Programming with NVMM requires to deal with two funda-

mental concerns. First, after a crash, an object may be lost,

which leads to a memory leak. This may happen when an ob-

ject is allocated but not yet reachable from a persistent root.

Second, after a crash, a reachable object may be partially

deleted and thus unusable. Such a situation occurs when

an object is freed but not yet removed from the reachable

graph. To avoid both problems, J-NVM focuses on simplicity.

It considers that once created, a persistent object remains

alive as long as it is reachable from a persistent root. This

approach is called liveness by reachability and commonly

found in many frameworks (e.g., [35, 62]).

Liveness by reachability is implemented in J-NVM using a

recovery-time GC, similarly to Makalu [7]. The GC traverses

the graph formed by the persistent objects when the applica-

tion resumes after a crash. This does not happen at runtime to

limit the impact on performance (see §2.2.1). During the col-

lection pass, if J-NVM finds a reference to a partially deleted

object inside the reachable graph, the reference is nullified.

Then, to prevent memory leaks, the persistent objects that

are unreachable from a persistent root are deleted.

2.5 Example usage
As illustrated in Figure 3, programmingwith J-NVM is straigh-

forward. Any class annotated with @Persistent is durable.

For instance, this is the case of Simple in Figure 3 (line 1).

To run the application, the developer compiles the sources

as usual, then passes a code generator over the bytecode files

(the .class files). Any class marked with @Persistent is
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transformed.
3
The code generator replaces the volatile fields

with persistent ones (lines 3 and 4 in Figure 3). Accordingly,

accesses to such fields are replaced by persistent accesses

(lines 8, 9, 12, 27 and 28). If a field is marked transient (line
5), the code generator keeps it in volatile memory, making

no transformation. The developer may use transient fields

to optimize the application, e.g., to deduce a volatile value

from the persistent state (see §3.1).

In addition to the above transformations, the code gen-

erator also wraps methods into failure-atomic blocks. The

fa="non-private" argument of @Persistent at line 1

specifies that each non private method has to be wrapped.

In the Main class of Figure 3, the application manipulates

a Simple object. It starts by creating (or retrieving) a persis-

tent memory region of 1 MB called "/mnt/pmem/simple"
(line 17). A persistent memory region contains by default

the persistent map JNVM.root. This map associates names

with the root persistent objects used by the application. The

main method uses this map to retrieve the persistent object

associated with the name "simple". If the object does not
exist (line 19), the method allocates a new Simple object

and records it in the map (line 20). Further, main retrieves

the simple object, increments its x field, sets its y field

and prints its content (lines 22-28). Line 30 creates a second

Simple object and inserts it in the root map. The code then

frees the first object still referenced by the local variable s
(lines 31-32).

2.6 Summary
J-NVM offers a general framework to inject durability in

a Java application. Starting from a set of legacy classes to

persist, the developer annotates them to generate appropri-

ate proxies. Once transformed, the methods of the proxies

are failure-atomic, that is they execute entirely, or not at

all, despite system failures. Because J-NVM exposes a class-

centric model that favors reliability over re-usability, the

developer cannot directly use the volatile classes from the

Java runtime in a persistent object (e.g., native arrays, or

java.lang.String). Instead, the developer should use the
drop-in persistent replacements provided in the J-PDT li-

brary (such as PString at line 9 in Figure 3).

With J-NVM, the developer has to manage differently the

life cycle of a persistent object than a volatile one. Liveness by

reachability requires a persistent object to be reachable from

the root map (JNVM.root). This restriction is commonly

found in prior frameworks, such as the PMDK library [49].

Persistent objects have also to be explicitly deleted where

appropriate. As illustrated at lines 31-32 in Figure 3, explicit

deletion makes the code slightly more complex than with an

integrated design. However, as shown in §2.2.2, such events

are rare in persistent data stores.

3
If the sources are unavailable, instead of relying on the @Persistent
annotation, the tool takes as input an explicit list of classes to transform.

1 @Persistent(fa="non-private")
2 class Simple {
3 PString msg;
4 int x;
5 transient int y;
6

7 Simple(int x) {
8 this.x = x;
9 this.msg = new PString("Hello, NVMM!");
10 }
11

12 void inc() { x++; }
13 }
14

15 class Main {
16 static void main(String args[]) {
17 JNVM.init("/mnt/pmem/simple", 1024*1024);
18

19 if(!JNVM.root.exists("simple"))
20 JNVM.root.put("simple", new Simple(42));
21

22 Simple s = (Simple)JNVM.root.get("simple");
23

24 s.inc();
25 s.y = 42;
26

27 System.out.println(s.x);
28 System.out.println(s.msg);
29

30 JNVM.root.put("simple", new Simple(24));
31 JNVM.free(s.msg);
32 JNVM.free(s);
33 }
34 }

Figure 3. How to use J-NVM.

3 System Design
J-NVM exposes NVMM through persistent objects. A per-

sistent object consists of a persistent data structure and a

volatile proxy. The proxy implements the PObject interface.

It contains the methods of the persistent object and defines

an interface to access the persistent fields of the object, which

are stored in NVMM, outside the Java heap.

Figure 4 shows a simplified version of the persistent object

generated by the code generator of J-NVM from the example

in Figure 3. The code generator is based on the ASM frame-

work [3, 10], which provides helpers to simplify the rewriting

of bytecode. To obtain Figure 4, the code generator first adds

the PObject interface, which marks objects of the Simple
class persistent, then it removes all the non-transient volatile

fields. Any access to a non-transient field (e.g., lines 8 and

9 in Figure 3) is then transformed into a call to a generated

method that accesses the persistent data structure (lines 7, 8

and 15 in Figure 4). Because of the non-private arguments

at line 1 in Figure 3, the code generator wraps each method

into a failure-atomic block. Such blocks (lines 6-10 and 14-16

in Figure 4) are delimited with faStart()..faEnd().
Additionally to the above setters and getters, the generated

code containsmethods tomanage the life cycle of a persistent

object. The sections below detail these methods and then

explain how the developer can use them jointly with the

low-level interface to create custom persistent data types.
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3.1 Life cycle
Association. By design, J-NVM decouples the persistent

data structure of an object from the proxy that represents it

in the Java world. J-NVM has thus to maintain an association
between a proxy and the persistent data structure it gives

access to. The addr field (line 20 in Figure 4) maintains such

an association: it contains the address of the persistent data

structure associated with the proxy. The getters and setters

use this address to execute operations over the persistent

fields. For instance, x is the second persistent field of Simple
in Figure 4. As a consequence, getX returns the integer

located at offset 8 in the persistent data structure at address

addr.

Allocation. The data structure of a persistent object is

stored in NVMM. J-NVM allocates it in the constructor, us-

ing JNVM.alloc (line 7 in Figure 4). Once allocated, the

persistent data structure is associated with the correspond-

ing proxy. The method alloc takes two arguments: the Java

class of the proxy, which is used during resurrection (see

details below), and the size of the data structure.

Persistent references and resurrection. A persistent ob-

ject may hold a reference to another persistent object. As

with primitive types, J-NVM provides the readPObject
and writePObject methods to manipulate them (see for

instance lines 27-28 in Figure 4). Because these methods ma-

nipulate proxies, the Java type system ensures that NVMM

contains only references to persistent objects, and not to

volatile ones.

To store a reference to an object a, writePObject stores

a.addr in NVMM. Upon dereferencing a, readPObject
dynamically creates a proxy associated to its persistent data

structure. In detail, readPObject reads the address of the

persistent data structure in NVMM, retrieves the name of the

proxy class in its header, then allocates the corresponding

proxy class. Once the proxy is allocated, writePObject
calls the constructor generated at line 22 in Figure 4, before

returning the proxy to the caller.

We call this constructor the resurrect constructor.4 The

resurrect constructor first associates the proxy with the per-

sistent data structure (line 23). Then, it calls the resurrect
method (line 24). This method, if overridden, may initialize

transient fields upon resurrection (e.g., the y field in our

example).

Free. As seen at lines 31-32 in Figure 3, calling JNVM.free
frees the persistent object. This method takes a proxy as

argument. It frees the persistent data structure associated

with the proxy and writes 0 in its addr field, which makes

the proxy invalid: after a call to free, accessing the proxy
throws an exception.

4
In our implementation, the resurrect constructor uses a signature that

cannot collide with a user-defined constructor.

1 class Simple implements PObject {
2 // transformed code
3 transient int y;
4

5 Simple(int x) {
6 JNVM.faStart();
7 this.addr = JNVM.alloc(getClass(), size());
8 setX(x);
9 setMsg(new PString("Hello, NVMM!"));
10 JNVM.faEnd();
11 }
12

13 void inc() {
14 JNVM.faStart();
15 setX(getX()++);
16 JNVM.faEnd();
17 }
18

19 // added code
20 long addr; // the persistent data structure
21

22 Simple(long addr) {
23 this.addr = addr;
24 this.resurrect();
25 }
26

27 PString getMsg() { return (PString)JNVM.readPObject(
addr, 0); }

28 void setMsg(PString v) { JNVM.writePObject(addr, 0,
v); }

29 int getX() { return JNVM.readInt(addr, 8); }
30 void setX(int v) { JNVM.writeInt(addr, 8, v); }
31 long size() { return 12; }
32 }

Figure 4. A generated persistent object.

3.2 Low-level interface
Prior research [5, 21, 24, 39, 70] shows that constructs such

as failure-atomic blocks and transactions are costly, and in

many cases not required by the application. For this reason,

J-NVM also exposes a low-level interface that trades the

simplicity of the high-level interface for better performance.

To use the low-level interface, the developer omits the fa
argument in the Persistent annotation at line 1 in Figure 3.
In that case, the code generator performs the same transfor-

mation as described above, but it does not wrap methods

in failure-atomic blocks. To still create such blocks, the de-

veloper can call faStart()..faEnd() explicitly. It is also

possible to fine-grained manage data persistence without

failure-atomic blocks at all, as we detail next.

Outside a failure-atomic block, the field accessors behave

differently. To achieve this, J-NVM maintains a per-thread

counter that tracks the nested level of failure-atomic blocks.

At runtime, J-NVM checks this counter when it loads or

stores a field. If the counter is strictly greater than 0, J-NVM

instruments the load/store to ensure that the failure-atomic

blocks execute atomically. Otherwise, it grants a direct ac-

cess to NVMM without mediation. We measured that check-

ing this counter for each access has almost no performance

impact because the counter is always in the L1 cache of
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the processor and the branch predictor makes correct pre-

dictions. For that reason, we have not investigated static

analysis methods to eliminate them.

Accessing NVMM without mediation requires to ensure

data persistence by hand. The remainder of the section is

devoted to describing the interface that J-NVM provides to

help the developer in this task.

3.2.1 The recover()method. If an object does not use

failure-atomic blocks, it can be in an inconsistent state at

recovery. To prevent such a situation, the developer needs

to override the PObject.recover() method. At recovery,

before the application resumes, this method is called for each

live object encountered during the collection pass.

3.2.2 Cache line management. A system crash can hap-

pen at any point in time. When such an event occurs, the

application needs to find out which operations were applied

before the crash. This requires to control the propagation

order of the CPU cache lines to NVMM. With failure-atomic

blocks, J-NVM transparently takes care of the cache line

management. In particular, the system ensures that all the

persistent stores of a block are propagated to NVMM at the

end of the block.

When using the low-level interface, J-NVM does not en-

force any propagation order, allowing the developer to make

optimizations. J-NVM exposes three operations to control

propagation to NVMM: pwb, pfence and psync. These op-
erations implement the architecture-agnostic instructions

defined by Izraelevitz et al. [24]. We adapted them to work

with the Java memory model [26, 40], as also proposed in

JEP 352 [27].

In detail, pwb(addr) adds the cache line of addr to the

write pending queue of the processor. Because of the Java

memory model, pwb may be reordered with other instruc-

tions. A call to pfence() prevents such a situation: it en-

sures that the preceding pwbs and stores to (both persistent

and volatile) memory are executed before the succeeding

pwbs and stores. The method psync behaves as a pfence
and additionally ensures that the cache lines in the write

pending queue are also propagated to NVMM.

J-NVMexposes pfence and psync directly in the PObject
interface. pwb is accessible using the methods generated in

a persistent object: pwb() flushes all the cache lines of the

object, and pwbX() flushes the cache lines that hold field x.

3.2.3 Validation and recovery. Calling pfence prevents
out-of-order execution inside the processor. This drastically

decreases the instruction-level parallelism. As a consequence,

reducing the number of pfences in the application is para-

mount for performance [14].

Unfortunately, liveness by reachability requires that each

reachable object is always in a consistent state. For instance,

if a newly-created object becomes reachable, its fields must

be voided to prevent reading random values at recovery. It

1 @Persistent
2 class LowLevel implements PObject {
3 PObject o;
4

5 LowLevel(String name) {
6 o = new Other();
7 o.pwb();
8 o.validate();
9 pwb();
10 JNVM.root.wput(name, this);
11 }
12

13 static void main(String[] args) {
14 a = new LowLevel("a");
15 b = new LowLevel("b");
16 pfence();
17 a.validate();
18 b.validate();
19 }
20 }

Figure 5. The low-level interface.

follows that a pfence should always precede a store that

would make an object reachable. Enforcing liveness by reach-

ability is thus harmful for performance.

To reduce the number of pfences, J-NVM does not con-

sider an object to be alive when it is just reachable. In-

stead, the object has also a valid status stored in its per-

sistent header. J-NVM considers that only both reachable

and valid objects are alive. Internally, an object is allocated

in the invalid state, and it only becomes valid after a call to

the validate method. Similarly, J-NVM atomically deletes

an object by invalidating it before recycling its memory.

The valid state is totally transparent to the high-level de-

veloper through the use of failure-atomic blocks. However,

with the low-level interface, the developer may call directly

validate to minimize the number of pfences.
Figure 5 illustrates how the developer may use the valida-

tion mechanism internal to J-NVM. The optimization con-

sists of deferring validation after the pfence at line 16, to

allocate and make reachable several objects with a unique

pfence. In detail, the code allocates two objects a and b
(lines 14-15), which themselves allocate a sub-object each

(line 6). The two objects are added to the root map (line 10)

using wput. This operation is weak, in the sense that it does

not rely internally on a failure-atomic block, and thus does

not executes pfences. The calls to pwb at lines 7 and 9 en-

sures that the cache lines of a, b, a.o and b.o are all added

to the write pending queue. The call to validate at line 8
validates a.o and b.o. This call does not execute pfence:
it just changes the valid state of the object and adds the

cache line of the header to the write pending queue.

If a crash happens before line 16, since a and b are invalid,

J-NVM will free them at recovery, even if they are already

reachable from the root map. J-NVM will also delete a.o
and b.o because they are not reachable from a live object.

As a result, in case of a crash before line 16, all the allocated
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id valid next

state

(15 bits) (1 bit) (48 bits)
class 0 any valid
class 1 any invalid
0 0 any free or slave

Table 2. The block header and its associated states.

objects are deleted. Thus, by not executing any pfence be-

fore line 16, the code is correct. The unique pfence at line

16 ensures that if a (resp. b) is valid (lines 17 and 18), then

so do a.o (resp. b.o).

4 Implementation
This section details the implementation of J-NVM. After a

description of the persistent heap, the section presents the

algorithm used to ensure failure atomicity and the library of

persistent data types.

4.1 The persistent heap
Designing a persistent heap requires to address fragmenta-

tion: after multiple object allocations and releases, the free

space is divided into small pieces, making allocation of large

objects impossible. Solving this problem is essential for a

persistent memory since, by definition, it is long lived.

Usually, we eliminate fragmentation inmanaged languages

such as Java by executing a compacting phase during a GC cy-

cle [28]. However, J-NVM avoids the use of a GC at runtime

to deliver better performance. To deal with fragmentation,

J-NVM relies instead on a memory layout inspired by the

work of Pizlo et al. [51]. This layout splits the heap in blocks

of fixed size, exactly as we do with the blocks of a file sys-

tem. If a large object does not fit into a single block, J-NVM

creates a linked-list of blocks to store its content.

Using blocks of fixed size eliminates the fragmentation

problem by design since we can always allocate large objects.

However, this memory layout also increases the complex-

ity of accessing large objects. J-NVM hides this complexity

behind proxies. Instead of keeping a single address for the

persistent data structure (line 20 in Figure 4), the proxy ac-

tually contains an array that holds the addresses of all its

blocks. The array is populated during the association be-

tween the proxy and the persistent data structure. Once the

proxy is initialized, retrieving the block that contains a given

field simply requires a division.

4.1.1 Block header. A block starts with a header of a sin-

gle word that provides its state (see Table 2). For allocated

blocks, next gives the next block that belongs to the ob-

ject. When id is not equal to 0, the block is the first block

of a persistent object, called the master block. In this case,

J-NVM uses id as an index in a persistent array to retrieve

the name of the proxy class during resurrection (§3.1). Other-

wise, when id equals 0, valid is necessarily equal to 0. We

have then two possibilities. The block can be a slave block,

which means that it belongs to a persistent object but it is

not the first block. Alternatively, the block may also be free

in which case it does not belong to any object.

4.1.2 Block allocation. J-NVM allocates a free block us-

ing a bump pointer stored in persistent memory and a free

queue stored in volatile memory. The free queue is imple-

mented with a concurrent queue to scale with the number of

threads. To allocate a block, J-NVM tries first to obtain one

from the free queue. If this fails, J-NVM creates new blocks

by bumping the bump pointer. When J-NVM allocates a

block, except when it uses the bump pointer, it only accesses

volatile memory and never updates NVMM. The task of ini-

tializing the block (as a master or a slave) is delegated to

higher levels of the software stack.

4.1.3 Recovery. At startup, J-NVM executes a recovery

procedure. To create the volatile free queue, this procedure

uses a volatile bitmap. For each block, the bitmap indicates

with a bit whether the block is free or not. Starting from

the root map, J-NVM traverses the live object graph. As any

graph traversal, this procedure has thus a complexity linear

in the number of live objects. When it finds a reference to a

valid object, J-NVM marks its blocks as alive in the bitmap,

and calls the recovermethod of the object. Otherwise, since

the referenced object is invalid, the reference is set to null.

At the end of the traversal, J-NVM populates the free

queue with the blocks marked as free in the bitmap. In doing

so, J-NVMwrites 0 in the valid bit of each free block to ensure

that a newly allocated block is necessarily in the invalid state.

Once the recovery procedure terminates, J-NVM triggers a

pfence.

4.1.4 Object allocation. When J-NVM allocates an ob-

ject, it first allocates its blocks using the free queue and the

bump pointer. Then, J-NVMwrites its id in the master block

and links appropriately the slave blocks. During the allo-

cation of an object, J-NVM does not use any fence since a

master block is necessarily in the invalid state.

4.1.5 Object deletion. To delete an object, the application
explicitly calls JNVM.free. This method invalidates the mas-

ter block and adds all its blocks to the volatile queue. J-NVM

does not execute a pfence in JNVM.free, which allows a

developer that uses the low-level interface to use a single

pfence to free a graph of objects. For instance, to free a and

a.o in Figure 5, the developer marks a as invalid by calling

JNVM.free and then explicitly triggers a single pfence. In
case of a crash after the pfence, J-NVM will delete a be-

cause it is invalid, and a.o because it is not reachable by

valid objects. Executing a pfence in JNVM.free for a.o is

thus useless.

4.1.6 Atomic update. For a developer that uses the low-
level interface, J-NVM provides a method that atomically

updates a reference. This method ensures that the collection
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1 void updateO(PObject n) {
2 n.validate();
3 pfence();
4 setO(n);
5 }

Figure 6. Atomic update.

pass executed at recovery cannot nullify the reference. As

shown in Figure 6, the implementation of this method is

straightforward. It simply validates the new reference, exe-

cutes a pfence and updates the reference. Calling pfence
ensures that the new object is valid before being reachable.

The code generator creates this method for each field that

references a persistent object. It also generates a second

helper that updates a reference and additionally frees the

old referenced object atomically. Our NVMM portage of the

Infinispan key-value store (see §5.1) uses these methods to

ensure at all time a sound association between a key and its

values.

4.2 Failure atomic blocks
As indicated in §2.5, the high-level programming model of

J-NVMprovides failure-atomic blocks.Many systems already

offer such a construct [12, 14, 15, 22, 44, 49, 62]. Our algo-

rithm is not new by itself. It is inspired by Romulus [14]

and adapted to our persistent memory layout. We have im-

plemented failure-atomic blocks not to advance the state of

the art, but instead to verify that we can build a developer-

friendly system based on our decoupling principle.

J-NVM implements a standard redo log. At a high level,

during the execution of a failure-atomic block, J-NVM adds

all the modifications (allocations, writes and frees) to a per-

thread persistent redo log, leaving original data intact. When

reaching the end of the failure-atomic block, J-NVM commits

the log then applies its modifications to NVMM.

Before committing the log, J-NVM does not uses any

pfence as data in NVMM is unchanged [14]. To commit the

log, J-NVM first executes a pfence to ensure that the state

of the log is persisted. Then, it marks the log as committed

and executes a second pfence to ensure that its new status

reaches NVMM. Finally, it applies the operations recorded

in the log without pfence. If a crash occurs during this last

step, the log will be replayed.

To update a persistent object, J-NVM considers two cases.

If the object is invalid, J-NVM directly modifies the object.

This may happen, for instance, if the object is allocated then

modified in the same failure-atomic block. Modifying an

invalid object is safe because it is deleted at recovery when

a crash occurs before commit. Now if the object is valid,

J-NVM maintains two versions of each modified block of the

object, an original one and an in-flight one. Upon reading,

J-NVM uses the in-flight block if it exists, and the original

block otherwise. Uponwriting, if the in-flight block is already

present, J-NVM directly performs writes to it. Otherwise, it

allocates an in-flight block, adds the pair (original, in-flight)

to the log then performs writes to the in-flight block.

At the end of a failure-atomic block, J-NVMmarks the per-

sistent log as committed then plays the operations recorded

in it. If it finds an allocation, J-NVM transparently validates

the new object, whichmakes the object alive if and only if it is

reachable. If it finds a deletion, J-NVM calls the JNVM.free
method. If it finds an update, J-NVM copies the in-flight

block into the original block.

After a failure, J-NVM first handles the per-thread logs of

failure-atomic blocks, then it executes the recovery proce-

dure (see §4.1.3). If a crash occurs before the block was fully

played, J-NVM replays its operations. If the crash occurred

before the block was committed, J-NVM aborts it. J-NVM

erases the log and lets the recovery procedure garbage col-

lect the in-flight blocks as well as all the objects allocated in

the block (these objects are still in the invalid state).

4.3 J-PDT
J-PDT is a stand-alone library of persistent data types built on

top of the low-level interface. This section gives an overview

of the main data types present in the library.

4.3.1 Persistent arrays. J-PDT provides arrays of fixed

sizes. An array contains its length at offset 0 and the elements

afterward. This class provides a constructor to initialize its

content appropriately, accessors to retrieve the elements,

and methods to flush either an element, or the array in full.

In addition, J-PDT provides extensible arrays similar to the

ArrayList class of the standard Java library. To extend

an array, we rely on the low-level atomic update methods

described in §4.1.6.

4.3.2 Maps and sets. J-PDT includes several set and map

abstractions. Implementing these data structures is more

challenging than implementing the arrays and extensible ar-

rays detailed previously. However, the decoupling principle

introduced by proxies offers a general pattern of solution:

the content of a persistent object is stored in NVMM, while

its logic remains in volatile memory.

Overview. We first implement a persistent set as a per-

sistent map that associates each key with itself. Then, to

construct a persistent map, J-PDT stores the references to

the persistent key/value pairs in a persistent extensible array.

In the proxy, J-NVM maintains two volatile data structures:

a free queue that stores the empty cells in the persistent ar-

ray, and a mirror map that mirrors the persistent array in

volatile memory. The mirror map implements the logic of

the data structure. For instance, for a hash table, we use a

Java HashMap, and for a persistent binary tree, we use a Java
TreeMap (a red-black tree).

During resurrection (see §3.1), J-PDT inspects each cell

of the persistent array. If it finds a non-null reference to a
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pair (k,v) at index n, it adds the mapping (k,n) to the

volatile mirror. Otherwise, n is added to the volatile free

queue. To add a key/value pair, J-PDT first removes a free

cell index n from the volatile free queue. If the queue is empty,

the persistent array is extended and the queue populated

accordingly. Then, J-PDT allocates a new pair in persistent

memory, and writes its references at index n in the persistent
array. To remove a key/value pair, J-NVM adds its index, say

n, to the volatile free queue. Then, it writes a null reference at
index n in the persistent array. The persistent data structure

is always in a consistent state because modifying it incurs a

single write to NVMM (at the right index in the persistent

array).

Base, cached and eager maps and sets. Resurrecting a
persistent object has a performance cost. Indeed, J-NVM

needs to allocate a proxy, traverse the linked-list of blocks of

the persistent object, and, for some object, deduce a volatile

state from the persistent state.

To avoid this cost for values stored in maps and sets, J-PDT

proposes different implementations of maps and sets with

different trade-offs between performance and memory con-

sumption.

The default implementation presented above is called the

base implementation, and it favors memory consumption.

For each key in persistent memory, the base implementation

keeps a proxy in volatile memory, but it systematically al-

locates a new proxy when the application retrieves a value

associated with a key.

Both the cached and eager maps and sets trade memory

consumption for better performance. They maintain a cache

of the proxies to the values. The eager implementation pop-

ulates the cache during resurrection, while the cached imple-

mentation populates the cache on demand. In our implemen-

tation, the cache contains all proxies but it would be possible

to extend this code to include only the hottest proxies.

4.4 Implementation details
This section completes the presentationwith implementation

details.

NVMM access. J-NVM leverages the Unsafe interface

to access NVMM. This interface directly inlines assembly

instructions in the generated code, similarly to the magic

interface of JikesRVM [20]. J-NVM uses this interface to read

and write NVMM. We also implemented pwb, pfence and

psync with this interface. For the recent Intel architecture

used in our experiments, we implemented pwbwith the clwb
instruction, and, even though they are conceptually differ-

ent, we implemented both pfence and psyncwith the same

sfence instruction. As a result, by using the intrinsic mech-

anism and adding three new instructions, J-NVM accesses

NVMM at nearly native speed (see our evaluation in §5.3.5).

Small immutable objects. As presented above, J-NVM

stores objects in blocks of fixed size. Consequently, the sys-

tem is subject to internal fragmentation, that is each object

consumes a whole block regardless of its size, potentially

wasting NVMM. To avoid internal fragmentation for small

immutable objects, e.g., PString in Figure 3, J-NVM uses

memory pool allocators built atop the default one (§4.1).

These allocators are able to pack several objects of the same

size in a single block.

Memory pool allocators handle only immutable objects.

This comes from the fact that the failure-atomic algorithm

described in §4.2 works at the block level and not at the object

level. To understand why, consider that two threads execute

each a failure-atomic block that modifies an object. If the

two updated objects are located in the same block, the block

will be replicated twice, and the content of the two replicas

will diverge. As reconciling these replicas requires complex

algorithms, J-NVM avoids such a situation by packing only

immutable objects in the same block.

Relocation. J-NVM ensures that the persistent heap is

relocatable. For that, instead of storing absolute addresses in

NVMM, it stores only offset relative to the beginning of the

heap.

5 Evaluation
In this section, we present the performance of J-NVM across

a variety of workloads and provide a detailed comparison

against other existing approaches.

5.1 Experimental setup
Hardware and system. The test machine is a quad-Intel

CLX 6230 hyperthreaded 80-core serverwith 128 GB of DRAM

and 512 GB of Intel Optane DC (128 GB per socket). It runs

Linux 4.19 with gcc 8.3.0, glibc 2.28 and Hotspot 8u232-b03

(commit c5ca527b0afd) configured to use G1. The patch

for Hotspot that adds the three NVMM-specific instruc-

tions to Unsafe (namely, pwb, pfence and psync) contains
200 SLOC. Besides this patch, J-NVM, J-PDT and J-PFA that

all together implement our NVMM object-oriented program-

ming framework, encompass about 4000 SLOC.

NVMM runs in App Direct mode and is formatted with

the ext4 file system. In this mode, software has direct byte-

addressable access to NVMM.

Infinispan. Our experiments use Infinispan, an open-

source industrial-grade data store maintained by Red Hat.

Infinispan exposes a cache abstraction to the application that

supports advanced operations, such as transactions and JPQL

requests. We use Infinispan version 9.4.17.Final [41], which

contains around 600,000 SLOC (see Table 1). Infinispan runs

either with the application (embedded mode), or as a remote

storage (server mode). Unless stated otherwise, we use the

embedded mode during our experiments and cache up to
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Figure 7. The YCSB benchmark.

10% of the data items. As seen in §2.2.1, a larger ratio would

significantly harm performance. Accordingly, we also cap

the volatile heap to 22 GB. This size gives the best perfor-

mance with our YCSB workload on a file system backend

atop NVMM (precisely, less then 3.7% of the total time is

spent in GC in Figure 7).

For each experiment, we report the average over at least

6 runs along with the standard deviation.

Persistent backends. Weevaluate different NVMM-ready

persistent backends for Infinispan: (J-PDT) A backend using

the J-PDT standalone library. (J-PFA) A backend built with

the failure-atomic blocks of J-NVM. (FS) The default file sys-
tem backend of Infinispan using NVMM formatted in ext4.

(PCJ) An implementation that relies on the Persistent Col-

lections for Java library [48]. PCJ uses the native PMDK 1.9.2

library [49] through the Java Native Interface. For reference

purposes, we also consider the following dummy backends

without persistence: (TmpFS) A file system stored in volatile

memory. (NullFS) A virtual file system that treats read and

write system calls as no-ops [1]. (Volatile) A configuration

in which persistence is simply disabled. Volatile behaves as

NullFS, except that the marshalling/unmarshalling phase is

avoided.

The persistent backend using PCJ is 274 SLOC long. The

J-PFA and J-PDT backends use the same code base which

contains 271 SLOC.

5.2 YCSB
Benchmark. We compare J-NVM against the other ap-

proaches by running version 0.18 of the Yahoo! Cloud Serv-

ing Benchmark (YCSB) [13] YCSB is a key-value store bench-

mark that consists of six workloads (A to F) with different

access patterns. A client can execute six types of operations

(read, scan, insert, update and rmw) on the key-value

store. Workload A is update-heavy (50% of update), B is

read-heavy (95% of read) and C is read-only. Workload D

consists of repeated reads (95% of read) followed by inser-

tions of new values. In the workload E, the client executes

short scans. Workload F is a mix of read and read-modify-

write (rmw) operations. We evaluate all workloads except E.

Infinispan only provides scan through the JPQL interface,

hence workload E is not comparable with the others that use
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Figure 8. The price to access NVMM from the file system.

a direct interface. If not otherwise specified, YCSB executes

in sequential mode (single-threaded client).

YCSB associates a key with a data record that contains

fixed length fields. Unless otherwise stated, we use the de-

fault parameters of 3M records, each having 10 fields of 100 B.

YCSB runs with the default access patterns (namely, zipfian

and latest). Compared to a uniform distribution, these pat-

terns improve the cache hit ratio, and makes thus the FS

backend more efficient.

J-PDT, J-PFA and PCJ all require to use persistent keys and

values in YCSB. To achieve this, we modified the Infinispan

client, which represent less than 30 SLOC from the vanilla

version.

Results. Figure 7 presents the throughput of the YCSB

benchmark with the different persistent backends. In this

figure, we observe first that J-PDT systematically outper-

forms the other approaches. Except in workload D, J-PDT is

consistently 10.5x faster than FS. In comparison to PCJ, the

difference ranges between 13.8x and 22.7x faster. In workload
D, J-PDT executes at least 3.6x more operations per second

than FS and PCJ.

The low performance of FS comes from the cost of mar-

shalling persistent objects back and forth between their file

system and Java representations. Figure 8 highlights this

phenomenon. In this figure, 1 KB corresponds to Figure 7.

Compared to Volatile, the three file system backends (NullFS,

TmpFS and FS) have similar performance. The completion

time is between 2.11-6.26x higher than the volatile base line.

In particular, NullFS, which fully ignores reads and writes,

is just slightly faster than FS. This shows that the main cost

comes from data marshalling and not from the file system

itself.

In Figure 7, the lower performance of PCJ is due to the

Java native interface that requires heavy synchronization to

call a native method [46]. J-NVM avoids this cost by lever-

aging the Unsafe interface (§3.2.2), which does not have to

synchronize the whole JVM to escape the Java world.

Overall, the results in Figure 7 outline that NVMM dras-

tically changes the way to access persistent data from the

Java runtime: while JNI calls or marshalling/unmarshalling

operations were negligible with slow storage devices, this is

no more the case with NVMM. They must be avoided where

possible.
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Figure 9. Impact of the cache ratio, the number of records, their composition and size (from left to right).

In Figure 7, J-PFA also systematically outperforms FS and

PCJ for the same reasons as mentioned above. Nevertheless,

J-PDT is still up to 65% faster. This result shows that hand-

crafted crash-consistent data structures can be more efficient

than a generic approach.

5.3 Performance analysis
This section provides a comprehensive analysis of the perfor-

mance of J-NVM. We detail the importance of the workload,

how J-NVM scales with the number of threads, the time to

recover from a crash and the performance of the low-level

interface.

5.3.1 Sensitivity to the workload. In what follows, we

analyze how J-NVM reacts to workload variations. We use

the settings presented in §5.1, but change one parameter

at a time. Figure 9 presents our results with YCSB-A. This

figure reports only the performance of J-PDT and FS since,

as presented earlier, they are respectively faster than J-PFA

and PCJ.

Caching. Figure 9ameasures the impact of caching persis-

tent data in Infinispan. In this figure, we observe that chang-

ing the cache size does not much impact the performance of

J-PDT. This observation holds for both reads (from 1.7 𝜇s to

1.2 𝜇s) and updates (from 2.6 𝜇s to 2.1 𝜇s). With J-PDT, only

proxies are kept in the cache. In particular, J-PDT never mar-

shal/unmarshal the persistent data structures themselves.

As caching brings almost no performance benefits, it is dis-

abled in all our experiments using J-NVM as a backend for

Infinispan.

For FS, improving the cache size has almost no perfor-

mance impact on updates. This comes from the fact that, as

Infinispan uses a write-through policy for durability, updates

need to access the file system in the critical path. On the con-

trary, having a larger cache benefits to reads (from 32.5 𝜇s

to 0.8 𝜇s) . At 0%, a read systematically fetches data from

the file system, which becomes less and less likely when the

cache size increases.
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Figure 10. Multi-threaded performance.

With a cache of 100%, J-PDT pays the cost of reading

NVMM through proxies, while FS directly uses volatile ob-

jects stored in the cache. As a consequence, FS is slightly bet-

ter than J-PDT for reads in this case (0.8 𝜇s versus 1.2 𝜇s). In

this experiment, the dataset is small (3 GB) and thus garbage

collection has a limited impact on performance. As under-

lined in §2.2.1, this caching policy would be problematic with

a larger dataset.

Number of records. We now turn our attention towards

the impact of the dataset size on performance. Figure 9b

presents the access latency when the number of records in-

creases. Overall, we observe that the performance of both

J-PDT and FS is stable. The number of records does not im-

pact performance because each operation works on a single

record at a time. Furthermore, as neither J-PDT nor FS use a

GC to collect the persistent state, the overheads of Figure 2

are avoided.

Record composition. In this experiment, we consider ad-

ditional fields (Figure 9c) and larger fields (Figure 9d). In both

cases, we adjust the number of records to keep a constant

dataset size.

We first observe that changing the record composition

only moderately impacts the performance of J-PDT. For

reads, the latency grows from 1.7 𝜇s to 7.0 𝜇s with more

fields (Figure 9c), and from 2.4 𝜇s to 4.0 𝜇s with larger fields

(Figure 9d). With updates, the latency grows from 3.6 𝜇s to

4.1 𝜇s with more fields (Figure 9c), and from 3.2 𝜇s to 14.6 𝜇s

with larger fields (Figure 9d). This slight increase in latency
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comes from the fact that J-NVM has to resurrect more fields,

or larger ones.

In Figures 9c and 9d, the read performance of FS signifi-

cantly degrades when the number of fields increases (from

17.7 𝜇s to 22.3 ms in Figure 9c). This is also the case when

the size of each field increases (from 17.5 𝜇s to 1.6 ms in

Figure 9d). Updates show a similar pattern: from 71.3 𝜇s to

71.3 ms with more fields, and from 71.0 𝜇s to 6.5 ms with

larger fields. As in Figure 8, this degradation comes from the

increasing cost of marshalling/unmarshalling voluminous

records.

5.3.2 Multi-threading. This section evaluates how J-PDT

behaves when the persistent objects are accessed concur-

rently. Figure 10 presents the throughput achieved in YCSB-

A and YCSB-C using 1M records when the number of threads

increases from 1 to 20. For both J-PDT and FS, accesses to

the persistent state are protected by the locks of Infinispan.

Notice that since Infinispan runs in embedded mode, a YCSB

thread is also an Infinispan thread.

In Figure 10, the peak performance of J-PDT is slightly

higher than Volatile in the two workloads. This surprising re-

sult comes from the increased preasure on GC in the Volatile

implementation. In YCSB-A, J-PDT saturates Infinispan with

12 threads, while Volatile needs 16 of them. In YCSB-C, J-PDT

and Volatile both saturate Infinispan with 8 threads. These

results show that J-PDT, with its design based on proxies

to access NVMM, does not introduce additional scalability

bottlenecks with respect to the volatile implementation. Fig-

ure 10 also shows that FS, with a realistic cache ratio of

10%, scales up to 16 threads in YCSB-A and up to 8 threads

with YCSB-C. In both workloads, at its peak performance,

FS remains more than 5x slower than J-PDT.

5.3.3 Performance of the recovery procedure. In this

experiment, we evaluate the time to recover from a crash

failure. Figure 11 presents our results. We use a bank ap-

plication inspired from the TPC-B benchmark [19, 61]. The

bank server holds 10M accounts of 140 B each. It provides a

single operation to execute a transfer between two accounts

in a failure-atomic block. The server runs in a container and

exposes a REST interface to remote clients. In Figure 11, the

load injector continuously performs transfers between two

randomly-selected accounts. It runs on the same machine as

the bank server.

After a minute, the container holding the bank server is

crashed with SIGKILL, then immediately restarted. Volatile,

which only stores the state in DRAM, resumes processing

requests after 2.4 s. Because the server restarts from a blank

state, accounts are recreated on demand with a 0€ balance

after recovery. Volatile is back to its nominal throughput

(9.5K ops/s on average) 5.5 s after the crash.

J-PFA restarts processing requests 8.5 s after the crash, and

returns to its nominal throughput (8.8K ops/s on average)

a few seconds later. J-PFA needs 6.1 s more than Volatile
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Figure 12. Persistent vs. volatile data types.

to restart because the recovery procedure has to run the

recovery GC over the 10M accounts. Volatile does not exhibit

this cost because the bank server simply restarts from an

empty state.

For completeness, Figure 11 also includes J-PFA-nogc.With

J-PFA-nogc, the recovery procedure does not trigger the tra-

versal of the object graph to delete invalid reachable objects.

Instead, the recovery procedure only inspects each block,

adding invalid ones to the volatile free queue (see §4.1.3).

Avoiding the graph traversal is correct in this experiment be-

cause the application can not create invalid reachable objects:

the server executes both the allocation and the insertion of

an account in the database in the same failure-atomic block.

We observe that without the graph traversal, J-PFA-nogc

restarts processing requests 2.8 s faster than J-PFA.

In Figure 11, FS takes 28.8 s to restart and 34 s in total after

the crash to return to normal (4.7K ops/s). This long delay

comes from reconstructing eagerly the cache in memory.

Upon restart, Infinispan reloads 10% of the accounts (1M)

from NVMM. When this occurs, J-PFA pays a lower price

because it creates proxies instead of reloading data in full.

5.3.4 Persistent data types. In Figure 12, we compare

the persistent maps available in J-PDT against their volatile

counterparts in Hotspot (java.util.*). Three data types
are considered: a hash table, a red-black tree and a skip-list

map. In total, this code base covers 629 SLOC.

In Figure 12, we run YCSB-A directly on the data types

themselves, without Infinispan. The “Blackhole” histogram
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Sequential Random

Read Write Read Write

J-NVM 3.21 GB/s 0.74 GB/s 0.71 GB/s 0.38 GB/s

C 4.01 GB/s 0.78 GB/s 1.94 GB/s 0.40 GB/s

Table 3. Access to a persistent 256 B-long block.

in Figure 12 corresponds to an execution in which the oper-

ations are not applied. In other words, this histogram mea-

sures the time spent by the benchmark to inject the workload.

Figure 12 shows that J-PDT is 45-50% slower than a volatile

implementation. The rationale behind this drop of perfor-

mance is the following: (i) J-PDT handles crashes which

requires pfences in the critical path; (ii) NVMM is slightly

slower than volatile memory [25]; and (iii) J-PDT relies on

proxy objects to access NVMM.

5.3.5 Block size andNVMMaccess performance. Dur-
ing our experiments, we use a block size of 256 B. We mea-

sured that this size provides the best overall performance,

because NVMM uses internally also a cache line of 256 B. A

YCSB record contains 10 fields. With small fields (100 B) the

NVMM space lost due to the block headers and the internal

fragmentation accounts for 21.2% per record. This reduces

to 9.4% with larger fields (10 KB).

Table 3 presents the throughput to access blocks of 256 B

using J-NVMandC. Forwrites, the benchmark triggers a pwb
after each CPU cache line (64 B) and it executes a pfence
after a full block. In Table 3, J-NVM is at most 24% slower

than C, except with random reads where it is 2.8x slower.
These results show that the Unsafe interface allows most

of the time to access NVMM at nearly native speed.

6 Related Work
Managing persistent data structures directly from the appli-

cation through mapped files is an old subject largely studied

in operating systems literature [6, 36, 42, 47, 65]. This line

of research was fully renewed with the arrival of NVMM.

Several file systems tailored for NVMM exist (e.g., NOVA-

Fortis [67], SplitFS [30] or Strata [31]). As seen in §5.2, using

NVMM as a file system leads to costly marshalling/unmar-

shalling operations.

Many works focus on offering to the developer a transac-

tional interface inspired by databases [12, 14, 15, 22, 44, 49,

62]. Others directly deal with the low-level NVMM semantic

[55, 56] to implement specific data types [5, 21, 23, 24, 39, 70].

A third category of works propose recipes to build persistent

data types upon the prior knowledge about volatile construc-

tions [23, 24, 33, 69]. Overall, these works show that general

techniques and hand-tuned persistent data types have their

pros and cons. In particular, as confirmed by our comparison

between J-PFA and J-PDT, failure-atomic blocks are easy to

use but often less efficient than hand-tuned data types.

All these prior works target native programming lan-

guages and they cannot be readily used in a managed lan-

guage such as Java. Some recent efforts try to fill this gap

by using an integrated design [22, 59, 66], or an external

design [38, 48]. We discuss Espresso [66], AutoPersist [59]

and Go-pmem [22] in §2.2 and §2.3. We show experimentally

that their approaches lead to collecting very large datasets,

which negatively impacts performance. In §5, we evaluate

PCJ [48], which is in essence similar to LLPL [38], and show

that it performs less efficiently than a file system interface.

Panthera [63] stores Java objects in NVMM not to make

them durable but to save energy. This system detects cold

objects and leverages the GC to migrate them to NVMM.

Such an approach is complementary to J-NVM. Interestingly,

the experiments reported in [63] confirm that, for a large

dataset, the GC has a significant impact on performance. In

particular, for a heap of 64 GB, up to roughly a third of the

execution time is spent garbage collecting objects.

Regardless of NVMM, several applications avoid running

a GC by storing part of their datasets outside the heap. This

is notably the case of modern data stores (e.g., Spark [68]

and Cassandra [32]). Apache Arrow [2] aims at addressing

the problem of making such data structures portable. In [43],

the authors propose an efficient volatile lock-free off-heap

map. The map allows to modify directly off-heap objects,

that is, without copying data between the on- and off-heap

spaces. Contrarily to J-NVM, it only manipulates arrays of

bytes, and thus requires to marshal/unmarshal its content.

7 Conclusion
This paper presents J-NVM, a principled approach to directly

access NVMM outside the Java heap with volatile proxies.

Our evaluation using micro-benchmarks and the Infinispan

data store shows that J-NVM delivers better performance

than other existing solutions.
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