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1 Motivation
Until recently volatile media were order of magnitude faster
than persistent ones. This fundamental difference much im-
pacted the way systems are architectured.

Recent advances in persistentmemory technology promise
to re-shuffle the cards. In particular, non-volatile main mem-
ory (NVMM) is a byte-addressable memory that preserves
its content after a power outage. It provides durability with
memory performance similar to DRAM, offering the promise
of a dramatic increase in storage performance.
To harvest the benefits of NVMM, it is key to integrate

it with programming languages. This matters notably for
languages used in the design of the distributed storage sys-
tems at heart of nowadays computer infrastructures. Such an
integration is however challenging because managed object-
oriented languages are complex software runtimes which
inherit from decades of refinments and optimizations. This
paper tackles the problem of integrating NVMM with the
Java language.

2 Limitations of the State of the Art
To date, approaches that integrate NVMM with Java use it
as a mass storage medium accessible through a file system
interface [6, 8, 18], address it through the Java native inter-
face (JNI) [11, 12], or transparently make part of the Java
heap persistent [14, 17]. As detailed next, such approaches
are generic and unsatisfactory for several reasons.

• The file system and JNI approaches maintain dual repre-
sentations of data, one in-memory and another on NVMM.
This requires to continuously marshal objects back and
forth between the persistent and the volatile memory. In
particular, complex software mechanisms are necessary
to keep the two representations mutually consistent.

• The integrated design solves the dual representation prob-
lem: plain Java objects are stored in NVMM and are ac-
cessible directly with read and write instructions by the
application. However, it requires significant modifications
to the Java virtual machine (JVM), and comes with several
performance limitations and reliability concerns whose
are detailed next.

Garbage collection (GC). Figure 1 shows that garbage
collecting just 80 GB can degrade by 3 the completion time,
yet NVMM is expected to host hundreds of GBs to TBs of
data. Further, we report after studying several NVMM-ready
data stores that persistent objects however are often deleted
in a very limited number of places. Altogether, the use of
garbage collection for persistent objects seems unneeded.
Orthogonal Persistence. The lack of static persistent

types raises the need for Java bytecodes instrumentation in
order to transparently check whether an object is allocated
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Figure 1. YCSB-F in Java with different cache ratios.

on volatile or persistent memory at runtime. AutoPersist
[14] presents a 51% slow down when not even actually using
NVMM. (9% with their QuickCheck optimization [15])
Furthermore, when persistent states in the application

are not made obvious by types, neither the developper nor
the compiler can easily identify bugs since they occur at
runtime [2, 9]. Mistaking a volatile object for a persistent
one leads to data loss, the opposite to a non-volatile memory
leak. Instead of silently loosing data or memory, the runtime
should provide help to prevent these situations.

In short, the integrated design offers direct NVMM access
but it trades in code simplicity for performance penalty (GC
+ code instrumentation) and potential reliability issues.

3 Key Insights
This paper proposes to remedy these shortcomings by keep-
ing NVMM outside the Java heap to avoid costly garbage
collection while retaining direct NVMM access as in the
integrated design. To this end, we introduce a decoupling
principle between the data structure of a persistent object
and its representation in the JVM. Specifically, persistent ob-
jects are separated into a data structure that is stored off-heap
on NVMM and a proxy Java object that remains on-heap in
volatile memory. The data structure holds the fields of the
persistent object, while the volatile proxy acts as a gateway
to the durable off-heap data structure and implements the
methods of the persistent object. With this design, durable
data remains outside the Java heap (using a dedicated mem-
ory layout), and thus cannot be collected by the Java runtime.
The dual representation of data is also avoided thanks to a
JVM interface that inlines the low-level instructions that
access NVMM directly from Java methods.

4 Main Artifacts
These key ideas are implemented in the J-NVM framework
[7], a lightweight pure-Java library that runs on the Hotspot
8 JVM with the minimal addition of three NVMM-specific
instructions (pwb, pfence and psync [5]).
J-NVM is a low-level interface that focuses on efficient

proxy and memory manipulation. Namely, the bare logic
to instantiate and destroy persistent objects and efficiently
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Figure 2. The YCSB benchmark.

access their fields. We build up from J-NVM two higher level
interfaces: J-PFA and J-PDT.
• J-PFA provides failure-atomic blocks of code, i.e. a generic
way of making any code crash consistent.

• J-PDT is a collection of hand-crafted crash-consistent data
structures for NVMM (e.g. arrays, maps, trees), which do
not rely on J-PFA for performance.
Moreover, because J-NVM relies on explicit persistent

types, we include a code generator to automatically enhance
and decouple legacy Java classes into a persistent data struc-
ture and a volatile proxy object. It is implemented as an
off-line Java bytecode to bytecode post-compilation trans-
formation plugin integrated in the application build system.
It scans for annotated classes and apply the transformation
for each one, while preserving user-defined functionality in
any class hierarchy.

5 Key Results and Contributions
We evaluate J-NVM by implementing several persistent back-
ends for the Infinispan data store [10] and test them on a
TPC-B like workload [16] as well as the YCSB benchmark [3].
These implementations are available at [1]. Figure 2 depicts
the performance on the YCSB workloads for backends based
on J-PFA and J-PDT, the original file-system approach FS sit-
ting atop DAX-ext4, as well as a backend based on PCJ that
uses internally the Intel PMDK [13] through the Java Native
Interface. J-NVM is significatively more effecient than prior
approaches, at least one order of magnitude faster.

Throughout our evaluation campaign, we show that:
• Both the J-PDT and J-PFA systematically outperform the
external design. In YCSB, J-PDT is at least 10.5x faster
than FS or PCJ, except in a single case where it is only 3.6x
faster.

• While the failure-atomic blocks of J-PFA offer an all-around
solution, J-PDT, with its hand-crafted persistent data types,
executes up to 65% faster. Compared to the Volatile imple-
mentation, J-PDT is only 45-50% slower.

• Integrating NVMM in the language runtime hurts per-
formance due to the cost of garbage-collecting the per-
sistent objects. For a Redis-like application written with
go-pmem [4], increasing the persistent dataset from 0.3 GB
to 151 GB multiplies the completion time of YCSB-F by 3.4
Other relevant insights from the performance analysis of

J-NVM:
Marshalling. The low performance of FS comes from

(un)marshalling operations to move the persistent objects
back and forth between their file and Java representation.
PCJ is highly impacted by the cost of JNI calls to escape

the Java world. These operations were commonly used and
had no significant impact with slower storage media, but
can now be bottlenecks with NVMM and should be avoided
where possible.

Caching. We observe in the YCSB benchmark that J-PDT
does not benefit from caching. Indeed, because data is ac-
cessed directly and only proxies are kept in the cache, in-
creasing the cache ratio has almost no impact on read or
update latencies.

Recovery. The performance of the recovery procedure is
evaluated with a TPC-B like (transactional) workload. J-PFA
recovers about 4.7x faster than FS and up to 8.6x faster with a
recovery optimization possible for purely transactional work-
loads. Conversely, FS has to repopulate the 10% in-memory
cache eargerly on recovery when J-PFA can only recreate
proxies lazily with much less NVMM bandwidth usage.
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