
Contact

Partenaires

oc
to

be
r 2

02
1

S
O

S
P

’2
1

J-NVM:
Off-heap Persistent Objects in Java

[firstname].[surname][at]telecom-sudparis.eu github.com/jnvm-project/jnvm

Persistent Memory in Java
Background
■ NVMM = byte-addressable non-volatile memory 

(persistent + DRAM speed) 
■ Java language used in many data stores and 

processing frameworks
■ Filesystems or JNI are not efficient 

enough to access NVMM
■ Prior works for managed language runtimes 

propose orthogonal data persistence, leading to 
inefficiencies and difficulties in programming 
NVMM

■ No solution for garbage collection: language 
runtimes cannot scale to persistent dataset size

J-NVM: a high-level API
Implementation: 
a java library and framework
■ Code-generator: automated conversion of POJOs 

at compile time
■ J-PFA: generic crash consistent data manipulation 

through failure-atomic blocks of code
■ J-PDT: hand-made efficient persistent data types, 

including drop-in replacement for some of the 
JDK classes (e.g., collections)

■ Low-level API: custom proxy building with direct 
memory access intrinsics for fine-grained 
persistence and performance

Efficient PMEM access
Evaluation: YCSB and TPC-B like benchmarks
■ Up-to 10.5x faster than FS-based persistence on 

NVRAM
■ No need for a volatile cache 
■ 5x faster recovery time for 10M objects
■ Around 50% slower than the DRAM baseline
■ J-PDT up to 65% faster than J-PFA

Authors
Anatole, Lefort
Yohan, Pipereau
Kwabena, 
Amponsem
Pierre, Sutra
Gaël, Thomas

SOSP'21 
Proceedings of the 
ACM SIGOPS 28th 
Symposium on 
Operating Systems 
Principles

Publication

YCSB workloads

addr

Map root = JNVM.root();
Simple s = root.get(“Simple”);
s.setX(42);

(DRAM)

(PMEM)

0 8 12

42

Off-heap Persistent Objects
Decoupling = persistent data structure + 
volatile proxy
■ Persistent data structure allocated off-heap 

(NVMM), unmanaged by the language runtime
■ Proxy object instantiated lazily on-heap (DRAM), 

managed by the language runtime, intermediate 
the access to data structure (methods), 
re-constructed when dereferencing a persistent 
pointer

■ Explicit deallocation of the persistent data structure
■ Recovery-time GC to allow non-crash-consistent 

NVMM management
■ Objects are alive as long as they are reachable 

from a root object.
■ Dynamic root object definition using naming in a 

global registry (persistent map)

D
ecoupling illustra

ted

Infinispan durable back stores

Hardware: 4 Intel CLX 6230 HT (80-core), 128GB DDR4, 4*128GB Optane DC (gen1)

ext4-dax JNI + PMDK

TPC-B workload

System crash

Time to recover

YCSB-F workload

GO-PMEM

Infinispan data store with NVMM-FS back store

in-memory
caching ratio

e.g. Intel’s Optane DC PMEM


