TELECOM
SudParis

J-

Oftf-heap Persistent Objec:’rs N J Vv

* 1P PARIS

V

Publication
SOSP'21

Proceedings of the
ACM SIGOPS 28th
Symposium on
Operating Systems
Principles

Partenaires

4. a4

FONDATION
Mines-Télécom
La Fondation de I'lMT

BINSTITUT
CARNOT

o ‘ Télécom & Société numérique

Infinispan durable back stores
J-PDT =

Throughput
(Kops/s)

YCSB workloads A

NVM:

Persistent Memory in Java

Background

m NVMM = byte-addressable non-volatile memory
(persistent + DRAM speed) e.g. Intel’'s Optane DC PMEM

m Java language used in many data stores and
processing frameworks

m Filesystems or JNI are not efficient
enough to access NVMM

m Prior works for managed language runtimes
propose orthogonal data persistence, leading to
inefficiencies and difficulties in programming
NVMM

m NoO solution for garbage collection: language
runfimes cannot scale to persistent dataset size

U
o)
0
O
C
joi
=
Q
S
qQ
D
“ Map root = INVM.root();
Simple s = root.get(“Simple”);

s.setX(42);

J-NVM: a high-level API

Implementation:
a java library and framework

m Code-generator. automated conversion of POJOs
at compile time

m J-PFA: generic crash consistent data manipulation
through failure-atomic blocks of code

m J-PDT: hand-made efficient persistent data types,
iINncluding drop-in replacement for some of the
JDK classes (e.g., collections)

Low-level API: custom proxy building with direct
memory access intrinsics for fine-grained
persistence and performance

JNI'+ PMDK
PC] mmm

ext4-dax

J-PFA FS =l

600
500
400
300
200
100

0

B C D F

Hardware: 4 Intel CLX 6230 HT (80-core),

Authors

Anatole, Lefort
Yohan, Pipereau
Kwabenag,
Amponsem
Pierre, Sutra
Gaél, Thomas

,_4—"’-/

A4 4

Institut Mmes Telecom

Infinispan data store wfrklw NVMM-ES back store
o0 [R o[
0.98 |-
10% I e 1%
1% I4 gc E 0.96 I 10%
in-memory | cofmpute U 0.95 Lo i =

caching ratio

0 10 20 30 103 104

102

Completion time (min) Latency (us)

CPU compute time 1

GO-PMEM
CPU GC time
completion time ——

0 Jmmmﬂﬁ

0.30 0.59 1.18 237 474 948 18.96 37.92 75.84 151.68
YCSB-F workload Persistent dataset size (GB)

Time (min)

Off-heap Persistent Objects

Decoupling = persistent data structure +
volatile proxy

Persistent data structure allocated off-heap
(NVMM), unmanaged by the language runtime

Proxy object instantiated lazily on-heap (DRAM),
managed by the language runtime, intermediate
the access to data structure (methods),
re-consiructed when dereferencing a persistent
pointer

Explicit deallocation of the persistent data structure

Recovery-time GC to allow non-crash-consistent
NVMM management

Objects are alive as long as they are reachable
from a root object.

Dynamic root object definition using naming in o
global registry (persistent map)

Efficient PMEM access
Evaluation: YCSB and TPC-B like benchmarks

Up-to 10.5x faster than FS-based persistence on
NVRAM

No need for a volatile cache

5x faster recovery time for 10M objects
Around 50% slower than the DRAM baseline
J-PDT up to 65% faster than J-PFA

System crash

J-PFA —o— : FS Volatile —=—

J-PFA-nogc -+

+

10

Throughput (Kops/s)
SOSP’21

Ol\)n-P-O\OO

20
TPC- B workload Time (s)

128GB DDR4, 4*128GB Optane DC (genl)

october 2021

Contact

[firstname].[surname][at]telecom-sudparis.eu

O github.com/jnvm-project/jnvm

