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Abstract—We introduce C, a systematic methodology for
designing Compute Express Link (CXL) coherence controllers,
to overcome interoperability challenges that arise from the
mismatch of coherence protocols and memory consistency models
in heterogeneous CXL-connected systems. Crucially, CXL lacks
a unified heterogeneous computing interface, which can lead to
unpredictable and inconsistent behavior when multiple heteroge-
neous devices decide to share cache-coherent CXL memory. C*
acts as a pivotal interface between diverse heterogeneous compute
units, bridging the semantic differences without necessitating
disruptive changes to existing system architectures. Our approach
hinges on two key principles: delegating memory operations
across coherence domains and enforcing atomicity at domain
boundaries, thereby preserving the native memory consistency
model semantics of each unit. We implement C* as a generic
gemS model and validate its correctness through exhaustive
litmus testing. We also show that C* incurs minimal performance
overhead compared to unified native coherence protocols.

Index Terms—Cache coherence, CXL, disaggregated systems

I. INTRODUCTION

Modern data centers face growing pressure to reduce energy
consumption and improve resource utilization [3[], [38]], [64].
At the same time, resources tend to be overprovisioned [74],
with studies reporting average memory utilization rates below
40% and up to 25% of memory being stranded—allocated but
unused [48]], [[88]. The result is billions of dollars in wasted
energy and capital, particularly as DRAM accounts for over
half of server hardware costs [62]. These inefficiencies are
further exacerbated by the increasing heterogeneity of work-
loads and compute platforms in modern data centers [[10], [33]],
[60]. Recent developments in high-performance interconnects,
such as the recently announced NVLink Fusion technology
by NVIDIA [1]], and the CXL standard [24], address these
wasted capacities by consolidating memory resources into
shared pools that can be accessed by different platforms.

Compute Express Link (CXL) has emerged as a trans-
formative interconnect technology enabling highly efficient
access to byte-addressable remote memory at the hardware
level [23]], [24]], [26]. CXL notably promises decoupling of
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compute and memory with independent scaling to reduce
stranded memory [[62]]. The latest version of the specifica-
tion, CXL v3.0, introduces multi-host coherence, allowing
multiple processors—potentially with different architectures
and consistency models—to interact with shared memory
using conventional load/store semantics [43[]. This happens
transparently because CXL attached memory is perceived akin
to a separate NUMA node with slightly higher latency (50—
100ns) [48]], [57]. CXL multi-host coherent memory enables
the development of distributed, heterogeneous applications.

Despite CXL'’s promising capabilities and its seemingly
simple memory abstraction, enabling coherent memory shar-
ing across multiple heterogeneous hosts, such as CPUs with
different ISAs (x86, Arm, RISC-V) or accelerators (GPUs,
FPGAs, TPUs), presents major challenges. To date, to the
best of our knowledge, no hardware platform supports multi-
host coherence CXL—not even for homogeneous systems. We
identify two key unresolved challenges that must be addressed
to ensure correctness and efficiency.

The first challenge is bridging the semantic gap between
cache coherence (CC) protocols. Each compute architecture
implements its own CC protocol—complex, performance-
critical state machines tightly integrated with the proces-
sor and memory subsystems. Extending them to support
CXL as a single, unified coherence protocol would require
disruptive redesigns and significant verification effort, with
unclear performance and broader applicability trade-offs. A
more practical alternative is to retain each host’s existing CC
protocol, use CXL for inter-host coherence, and introduce
specialized translation logic to reconcile differences between
the host and CXL protocols. However, even in the simplest
case—integrating MESI-based hosts with CXL’s MESI-like
protocol—subtle differences lead to a combinatorial explosion
of states, making the translation logic highly complicated.
Designing this logic in a manageable and correct manner
requires a systematic approach, with clear design rules to
ensure both correctness and performance.

The second challenge is handling heterogeneous mem-
ory consistency models (MCMs), as different compute ar-
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chitectures implement distinct memory models with varying
guarantees—such as TSO for x86 or relaxed models for
Arm [3]], [[69]]. Preserving each architecture’s MCM is critical
for correctness, and coordinating these models across hetero-
geneous hosts that share memory through CXL introduces
significant complexity and programmability challenges. While
prior work has addressed the challenge to combine different
MCMs into a unified global model [31]], [68]], these approaches
fall short for CXL because they are either incompatible with
the dynamic nature of reconfigurable CXL systems [68]], or are
too abstract and lack critical specific rules for directly applying
them to a complex CXL system [31].

To overcome these two challenges, we introduce C3. CXL
Coherence Controller, a hardware component that sits at
the intersection of a host’s CC protocol and the CXL CC
protocol. C? systematically bridges the semantic and memory
consistency gaps across heterogeneous CC domains.

C? is based on the theoretical foundation of compound
MCMs [31]]. From this abstract model, we derive two con-
crete, implementation-aware design rules that account for the
distributed and asynchronous nature of CXL systems. The first
rule (Flow Delegation) defines when memory operations must
be forwarded between CC domains to ensure global visibil-
ity and consistency. The second rule (Atomicity) guarantees
that no coherence effects are produced in the origin domain
before the completion of a forwarded operation is observed.
This implies other memory operations are logically stalled,
guaranteeing that all processors observe the same global
order of memory requests. Following these rules ensures that
the bridged system preserves the high-level axioms of the
compound MCM, making C* a concrete implementation of
compound MCMs for CXL systems. Notably, C* enforces
these rules by relying entirely on the native flows of the
combined CC protocols, allowing it to bridge protocols with-
out modifying existing coherence state machines or requiring
intrusive protocol changes.

We implement C? as a generic gem5 model that can be
instantiated for different combinations of host CC protocols
and CXL, allowing us to evaluate the correctness, general-
ity, and performance of C?. Using formal verification and
comprehensive litmus testing, we validate that C* correctly
preserves the semantics of each host’s MCM and CC protocol
across multiple combinations of CC protocols and architec-
tures. Finally, using a wide range of workloads, we show that
C? introduces minimal performance overhead of 3.8-25.4%
(average 5.5%) compared to a native system without CXL.

In summary, we make the following contributions:

o A generic and systematic methodology to combine arbitrary
host-level cache coherence protocols with CXL through
well-defined design rules.

o A generic gem5 model of C? that enables simulating CXL
systems with heterogeneous host cache coherence protocols.

o A hierarchical CXL .mem protocol implementation in gemS5
for CXL 3.0, made available as open source.

« Correctness verification of our approach using formal meth-

ods and litmus tests, demonstrating that memory consistency
semantics are preserved across heterogeneous systems.

II. BACKGROUND
A. CXL Remote Memory

Compute Express Links (CXLs) [23], [24], [26] is an
open standard for high-speed, efficient communication be-
tween host processors and peripherals like accelerators, GPUs,
and memory expanders. CXL defines two cache coherence
protocols: CXL.cache and CXL.mem. We base our work on
CXL.mem and the recently introduced support in CXL 3.0 for
multi-headed memory devices and device-initiated invalidation
flows. At a high level, this now enables multiple hosts to
access and share the same memory device, with standard
load and store instructions. This results in a transparent,
hardware-managed, cache-coherent remote shared memory —
an appealing abstraction for building distributed applications.
Given CXL'’s architecture independence, future applications
will likely leverage this multi-host coherent memory to opti-
mally combine diverse hosts for specific tasks. To our knowl-
edge, no prior work has investigated the implications of CXL’s
multi-host coherent memory in heterogeneous environments.

B. Memory Consistency Models

Memory consistency models (MCMs) dictate the apparent
execution order of memory operations, crucial for correct
parallel program behavior [39]]. Strong models such as Sequen-
tial Consistency (SC) prohibit memory reordering, making
them intuitive but performance-limiting. This leads modern
CPUs to adopt relaxed MCMs like x86’s Total Store Order
(TSO), which allows only store-load reordering for different
memory locations [78]]. In contrast, weak MCMs, like the one
used in Arm CPUs, by default allow all memory accesses
to be reordered, requiring the program to use explicit barriers
when ordering is required [[13]]. Cache coherence protocols are
pivotal in enforcing these models, as they define how memory
updates propagate across caches, cores, and physical memory.

In heterogeneous CXL systems, where hosts with differing
MCMs access shared memory, establishing a suitable system-
wide MCM poses significant challenges. A model that is too
weak could violate the native memory ordering guarantees
expected by each host, causing program inconsistencies and
breaking compiler mapping Conversely, an overly strong
model (like universal SC) would severely penalize architec-
tures designed for weaker consistency. The system-wide model
must be appropriately balanced — strong enough to maintain
program correctness across all architectures, while preserving
individual performance characteristics. Furthermore, any solu-
tion must be scalable: integrate with new hosts and different
MCMs without fundamental coherence system redesign.

Recently  proposed  compound memory  models
(CMMs) [31]], [63], [68] address this challenge by combining
distinct heterogeneous MCMs into a system-wide MCM

'Compiler mappings define how programming language-level synchroniza-
tion primitives map to memory operations and instructions on the target
hardware [87].



Message Dir. | MESI Eq. | Description

MemRd, A M2S | GetM Read memory and acquire excl. ownership
MemRd, S M2S | Gets Read memory and acquire sharable copy
MemWr, I M2S | WB+PutX | Writeback, do not keep cachable copy
MemWr, S M2S | WB Writeback, retain current copy and state
BISnpData |S2M | Fwd-GetsS | Device request sharable copy from host
BISnpInv |S2M |Fwd-GetM |Device request exclusive cachable copy

TABLE I: Most relevant CXL.mem coherence messages and
their equivalents in the MESI protocol. Messages consist of
opcode and meta value. Dir. indicates the message flow direc-
tion: M2S (Host-to-Device) or S2M (Device-to-Host). MESI
Eq. shows corresponding messages in the MESI protocol [63]].

where each thread’s native ordering constraints propagate
to the global level. This ensures existing software remains
correct without modification or re-compilation. CMM formally
defines a compositional operational model for the propagation
and serialization of memory requests across threads, which
guarantees that each thread’s local memory order is preserved
in the global memory consistency, irrespective of other
(heterogeneous) system threads. However, CMM reasons in
an abstract framework where memory operations propagate
atomically between two threads, without addressing the
practical challenges of request concurrency and heterogeneity
in real-world distributed coherence protocols. This work
demonstrates how to concretely realize CMM principles for
heterogeneous MCMs via CXL cache coherence protocol.

C. Cache Coherence Protocols

Cache coherence (CC) protocols in multi-core systems
maintain data consistency across core caches. They also play a
fundamental part in MCMs, as they organize cache-to-memory
exchanges in responses to core memory operations (load,
store, eviction, fence). This work focuses on directory-based
protocols due to their better scalability in large systems [63]].
CPUs commonly use MESI variants [[11[], [42] (with states
like Modified, Exclusive, Shared, Invalid), and extensions like
Intel’s MESIF or AMD’s MOESI. ARM’s CHI protocol [|15]]
is another MESI variant with corresponding MOESI states,
including an Owner state for direct dirty data sharing [39].

The CXL.mem CC protocol is also MESI-based, using the
same stable states but with subtle differences in transition def-
initions and transient states. summarizes key CXL.mem
coherence messages and their MESI equivalents [}|

A key difference is the presence of a conflict resolution
handshake (BIConflict), that we detail in [Sec. III-A] MESI-
family protocols enforce the Single-Writer-Multiple-Reader
(SWMR) invariant by requesting sharer invalidation on
writes. This mechanism suits strong MCMs like x86-TSO and
latency-sensitive CPUs that require immediate global ordering
of memory updates, at the cost of added complexit In

2The full list of CXL messages is in Appendix C of the CXL 3.1 spec. [24].

3While x86-TSO benefits from sharer invalidation before every write to
provide immediate global order, MESI implementations in weaker MCMs
like Arm or RISC-V (without a global write order) may choose to weaken the
SWMR invariant by, for instance, allowing cores to immediately acknowledge
invalidation but delay its processing until an explicit load fences [58], [59].
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Fig. 1: Remote shared memory exposed by CXL to distinct
architectures.

contrast, architectures with weaker consistency models like
GP-GPUs using Release Consistency Coherence (RCC) [30],
[63] that leverage self-invalidation (e.g., release operations)
to guarantee global visibility. This reduces overhead and
improves bandwidth, ideal for throughput-oriented GPUs [7]],
[76]. For example, RCC requires explicit memory fencing
instructions (Load-Acquire, Store-Release) to make
accesses globally visible, unlike MESI’s implicit guarantees
coming from the SWMR invariant.

III. HETEROGENEOUS CXL SYSTEMS

The CXL standard promises interoperability between any
devices that adhere to the CXL specification—CPUs (x86,
Arm, RISC-V), GPUs, FPGAs, accelerators, and memory
devices. depicts a simple heterogeneous configura-
tion where two compute nodes—an Intel-x86 node and an
Arm node—share a common memory pool through CXL. In
this setting, application threads on both compute nodes can
transparently perform concurrent accesses to the same cache-
coherent disaggregated memory pool.

However, CXL does not specify how to integrate these
different architectures to guarantee correct and consistent
behavior. Each employs its own MCM and CC protocol,
making integration with CXL’s CC protocol a non-trivial task
— multiple architectures are combined in a single system. In
particular, we identified two unresolved challenges: (1) bridg-
ing the semantic gap between CXL and diverse hosts CC
protocols, and (2) compounding their heterogeneous MCM:s.

A. Semantic Gap of Cache Coherence Protocols

The first challenge arises from significant differences be-
tween textbook CC protocols and CXL’s coherence mecha-
nism. Textbook CC protocols are designed for on-chip net-
works where vendors have complete control and understanding
of the network topology at design time. In contrast, CXL
operates in a fundamentally different environment; an off-
chip network running on top of PCle, where it must contend
with message reordering, higher latencies, and dynamically
changing topologies, where devices from varied vendors can
be added or removed at runtime.

For instance, a semantic gap exists even between CXL . mem
and textbook MESI [63], although they share the same stable
states, because their transaction flows significantly differ. No-
tably, CXL uniquely handles coherence message races. While
MESI permits multiple simultaneous transactions and relies
on cache controllers to infer serialization order from message
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delayed and reordered with the invalidation, creating ambiguity and requiring a handshake. (Right) The CXL directory and
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Fig. 3: Example of an inconsistent state between a MOESI

cluster and CXL. The cluster subsists in O-state (dirty sharer)

when the global CXL directory assumes S-state (clean sharer).

arrivals [[66]], CXL employs explicit conflict resolution within
its coherence flow. If a host awaiting a completion message
(cmpM) for a pending request observes an invalidation snoop
(BIsnpInv) from the CXL directory, it cannot determine in
which order the directory processed these requests. To resolve
this ambiguity, the host initiates a handshake by sending a
BIConflict message to the CXL directory, which replies
with BIConflictAck that cannot be reordered with the
completion message.

Figure [2] illustrates three scenarios of this mechanism in
action. In each case, a host in the shared state (S) initiates
a store operation by sending a GetM request (translated to
MemRd, A in CXL). At the same time, the CXL directory issues
an invalidation snoop (BISnpInv) to the same cache line due
to another host’s activity.

In the left scenario, message ordering is preserved: the
directory processes the requests in the same sequence they
were sent, and the host receives the completion (Cmp—-M) before
the invalidation. The host first performs its write and then a
write-back (CXL WEﬂ) upon receiving the invalidation.

The middle scenario shows the completion message being
delayed, causing the invalidation to arrive first. This creates
an ordering ambiguity, requiring the host to initiate a hand-
shake. Because the completion arrives before the handshake
acknowledgment, the host determines it should complete the
write before the invalidation.

4In the following, we use CXL Ws to refer to the whole write-back sequence

In the right scenario, the directory processes the inval-
idation first. After the handshake, the host determines it
must invalidate its internal caches before eventually receiving
permission to write.

These examples demonstrate that despite similar stable
states, the semantic differences between MESI-host and
CXL memory protocols create significant integration chal-
lenges. While some messages translate directly (e.g., GetM
to MemRd, A), others require context-sensitive translation de-
pending on both protocols’ states. Notably, the same invali-
dation message (BISnpInv) triggers entirely different action
sequences in each scenario.

The complexity grows further in heterogeneous systems
where diverse protocols like MESIF (x86 CPUs), MOESI
(Arm CPUs), or RCC (GPUs) connect via CXL. Consider
where a MOESI cluster receives a BISnpData mes-
sage to grant read permissions. In the textbook MOESI, this
corresponds to a Fwd-GetS message, which prompts the
cache with the modified line to send data to the requester and
downgrade to the O-state. However, MESI lacks an O-state
and expects a CXL writeback, creating a mismatch in protocol
definitions. Supporting the required writeback would not only
necessitate modifications to the original MOESI protocol, but
also further lead to inconsistent system states—the MOESI
host enters the O-state while the CXL network and MESI
hosts enter the S-state. The inconsistency makes it unclear
how subsequent operations should be handled, as the MOESI
host believes it holds dirty data requiring future writeback,
while other components assume they operate on clean data.

Thus, combining protocols is challenging as it requires
concurrently tracking the state of both protocols, and ad hoc
solutions are likely to introduce memory consistency bugs that
are notoriously difficult to detect and debug.

Requirement #1. We need a systematic approach with clear
rules to design a translation logic that overcomes the complex-
ity of combining different CC protocols. This logic must be
correct by construction, generic enough to accommodate any
architecture, and non-intrusive to existing architectures.

Research gap w.r.t. the state-of-the-art. Prior works have
proposed solutions to combine different CC protocols [21]],
[31], [67], [68]. Unfortunately, these approaches are not



suitable for CXL systems. HeteroGen [68]] proposes to join
multiple CC protocols by fusing the state machines of their
directory controllers into a unified one. However, this approach
requires knowing the entire system a priori, defeating CXL’s
dynamic topologies and flexibility in adding/removing devices.

HieraGen [|67] proposes a hierarchical approach to protocol
composition, which is architecturally well-suited to CXL’s
dynamic and modular topology. However, HieraGen is not de-
signed to support the conflict resolution transactions required
by CXL. Specifically, it assumes that every snoop initiated
by CXL must be made visible and fully resolved in the local
cluster before issuing a global response.

Recently proposed, compound memory models [31] intro-
duces a compositional approach for reasoning about memory
consistency in heterogeneous systems. They define an abstract
propagation model of memory operations, that enables dif-
ferent MCMs to interoperate while preserving each domain’s
local semantics. These models are particularly promising for
fulfilling requirement #1, as they define a set of rules that
guarantee correct global behavior when composing diverse
system architectures. However, these rules are specified in an
abstract framework that does not capture the full complexity
found in a hierarchical composition of CC protocols. For
example, while compound models describe how operations
must appear to be ordered from a programmer’s perspective,
they do not specify how coherence agents (e.g., a host and
the CXL directory) should resolve message races when they
observe events in different orders, in different CC domains.
Discrepancies, as illustrated in (right), are common
in CXL due to its switch-based interconnect and unordered
message delivery, which require explicit handshaking (e.g.,
BIConflict/BIConflictAck) to resolve.

While compound memory models provide a sound theo-
retical basis, they must be augmented with implementation-
level mechanisms and constraints that account for the realities
of fabric-level coherence and transient state management in
order to support full system correctness in CXL-based hetero-
geneous environments.

B. Compounding Memory Consistency Models

The second challenge stems from the fact that each architec-
ture defines its own MCM, imposing different constraints on
compilers and programmers. For instance, x86 CPUs in
implement the relatively strict TSO memory model, which
preserves most memory orderings by default. In contrast,
Arm CPUs implement a weaker memory model that allows
aggressive reordering unless explicit barriers are inserted.
While modern software practices consider weak ordering and
manual placement of fences to enable portable code, com-
pilers ultimately decide which fences to maintain or elide to
achieve correctness with minimal performance impact on the
target architecture [71]. Thus, in a heterogeneous system with
hardware threads assuming distinct MCMs, with explicit and
implicit ordering constraints, reasoning about correct memory
order becomes significantly more complex. The visibility of
memory operations becomes a complicated function of the

mixed MCMs and heterogeneous coherence protocols—such
as TSO from Intel, weak ordering from Arm, and MESI-CXL-
MOESI merged coherence protocol that connects all nodes.

Requirement #2. A heterogeneous CXL system needs a MCM
that is flexible enough to accommodate diverse architectures
while maintaining compatibility with existing software by pre-
serving architecture-specific native MCM semantics. In detail,
we want a program to expect the same concurrent behaviors
and possible memory instruction re-orderings, irrespective of
whether other machines access the same CXL memory region.

Research gap w.r.t. the state-of-the-art. Prior work has
addressed MCM diversity in heterogeneous systems through
two main approaches. The first approach is introducing new
MCMs, as in Memglue [21]], specifically for heterogeneous
systems. However, this is impractical as it is incompatible with
existing binaries, and necessitates complete recompilation and
new compiler mappings or potential code changes, on top of
new hardware shims between protocols.

The second approach is to fuse together MCMs specifically
such that they both retain their original properties. Prior work
proposes automated tools [31], [68] that combine diverse
MCMs by synthesizing a merger of CC protocols, such that
each architectures’ MCM semantics are preserved without
requiring code changes. While more promising, these solutions
are either incompatible with CXL’s dynamic nature or too
abstract to address real CXL system complexities, as discussed
in What is needed is a mechanism that enables the
generation of concrete CC controller instances that operate in
CXL systems, that provide by construction the same high-level
guarantees as in compound memory models [31].

C. Design Rules for Heterogeneous CXL Systems

1) The case for a coherence controller: To fulfill require-
ments #1 and #2, we propose the notion of a Coherence Con-
troller—a specialized component that sits at the intersection
of two CC domains and translates coherence requests between
them. The goal of this controller is to abstract away the
complexity of connecting heterogeneous CC protocols, hiding
all the translation intricacies without requiring any changes to
the existing protocols. This controller must be generic enough
to accommodate diverse architectures while maintaining the
correct memory consistency semantics within each protocol.

2) Intuition: To achieve our goals, we devise our coherence
controllers specifically to always result in a compound mem-
ory model [31] when combining heterogeneous MCMs. Com-
pound MCMs ensure two appealing properties: (1) preserve
local MCM axioms within each cluster — maintaining the same
ordering and atomicity guarantees as standalone systems, and
(2) establish a global order across cluster boundaries (system-
wide) of memory requests which become globally visible.

In a nutshell, within the abstract framework of [31], any two
memory operations (o, o’) with an ordering constraint (o — 0')
must propagate in the same order to all affected threads (o
propagates before 0'); and o’ must be stalled until o completely
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propagates. Overall, this ensures that propagation and visibility
of operations follows their dependency order constraints.

We translate these abstract principles into two concrete
design rules that define the interactions between coherence
transactions in our controllers. A first rule to define when ex-
actly coherence requests must be forwarded between clusters,
and a second rule to ensure atomicity of requests propaga-
tion between clusters. When followed, both rules ensure the
controller is correct by construction and realizes a compound
MCM compatible with all participating architectures.

3) Rule I: Flow Delegation: All operations that cannot
be satisfied locally or have globally visible effects must be
forwarded and handled at the global level. Similarly, all global
requests or snoops that affect the local domain must be
forwarded and handled at the local level.

Rationale: For remote memory operations, the global direc-
tory is the only entity that can guarantee memory consistency
across all compute nodes. It unilaterally decides on the se-
rialization order of global requests and is able to grant and
revoke permissions to different compute nodes. However, as
the global and local levels do not talk the same “language”,
the global directory is unable to directly affect local caches.
Instead, it must delegate all operations that require local
actions to local coherence domains.

This rule guarantees that, first, the global level is always
aware of operations made visible to other threads in local
domains, such that it can take appropriate actions to ensure
their global consistency—e.g., retrieving the latest copy upon a
read request or invalidating other sharers upon a write request.
Second, that the global level can enforce coherence actions
without modifications to the local CC protocols.

Example: Consider multiple hosts sharing data across CXL
(all in S-state) when one host attempts to modify the data. Sim-
ply acknowledging the request locally without first propagating
it globally to invalidate other sharers breaks MESI’s SWMR
guarantees, causing other hosts to operate on stale data.

4) Rule II: Atomicity: Upon forwarding a request to
another protocol domain, irrespective of the direction (local
to global or global to local), the bridge must not produce
any coherence effects in the origin protocol domain before
observing completion in the target domain.

Rationale: By preventing coherence actions in the origin
protocol domain (effectively stalling) until receiving a comple-
tion message from the secondary domain, this rule guarantees
all forwarded requests appear atomic in the origin domain.
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Fig. 5: C? architecture.

Otherwise, the system may violate causality or multi-copy
atomicity—the property where writes propagate to all cores
simultaneously— potentially breaking the memory consistency
guarantees in the origin domain.

Example: In the remote memory sends an invalida-
tion to Host 1 to be able to grant Host 2 write permissions. Vi-
olating Rule II, by having the controller immediately respond
with creates a race condition between when Host 2 receives
the GetM completion and writes the value and when Host 1
has invalidated all caches.

IV. C3: CXL COHERENCE CONTROLLER

Building on the two previous rules, we present C3, a
generic CXL coherence controller that bridges the semantic
gap between arbitrary host CC protocols and CXL, while
maintaining its MCM.

C? sits at the junction of two cache coherence domains—in
our case, a host protocol (local) and the CXL protocol
(global)—and is responsible for translating and forwarding co-
herence flows crossing the protocols’ boundary. The main idea
of C3 is to nest coherence transactions from one domain into
the other and produce the coherence effects required by either
protocol using the native protocol flows of the other domain.
This allows C? to remain generic and be fully interoperable
with legacy memory subsystems, as it requires no modification
to the existing caches or directory controllers of hosts or
memory devices. All logic to translate flows between the two
coherence domains is confined within C? itself, enabling easy
drop-in integration within existing systems.

C? connects heterogeneous hosts via CXL.mem and CXL
standard 3.0, which enables symmetrical coherence between
hosts and is applicable to CXL HDM-DB (supported by Type
2 and Type 3 devices). However, we note that our design
principles are generic and C* can be adapted for other CXL
revisions as well as serve as a blueprint for other interconnects
such as NVLink Fusion [1].

A. Overview

shows the high-level architecture of C* connecting
a compute node to a remote memory device via CXL. C3
consists of two main components: the CXL cache and the C3-
logic. The CXL cache represents the analog part of the shared
last-level cache (LLC) but instead of caching data from the
local memory, it holds copies of data mapped to the remote
memory region. We note that for simplicity, we consider the
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Fig. 6: Conceptual operations C* performs to map coherence
flows between coherence domains.

CXL cache as a separate entity; in practice, however, it may
be part of the LLC (e.g., one or more slices of the LLC [96]).
The C3-logic is the core of C* and is responsible for trans-
lating coherence flows between the host and CXL domains.
Conceptually, it combines the functionality of a local directory
controller (Dir) and a global cache controller (CC). That is,
from within the host, C? appears as a directory controller
responsible for managing coherence for data mapped to the
remote memory region, and from the perspective of the
memory device, it functions as an ordinary cache controller.

B. The Compound State Machine

The entirety of C3-logic is in its finite state machine (FSM),
a fusion of FSMs of the local directory controller and the
global cache controller. To construct C*’s FSM in a generic
way while obeying the two rules described in we
rely on three key concepts: (1) coherence flow delegation,
(2) transaction nesting, and (3) state compounding.

Coherence flow delegation. Recall from that Rule
I requires all requests to be forwarded when they cannot be
satisfied within the origin cache coherence domain. To achieve
this in a generic way without disruptive modifications in the
existing system, C> translates each coherence request from
one domain to a corresponding coherence flow of the other
domain. Conceptually, this is done by “simulating” the original
core accesses (load/store) that triggered a certain coherence
transaction in the other protocol domain.

To illustrate this concept, shows two scenarios. In
the first scenario (Fig. 6a), C7 receives a Gets from one of
the host’s caches using the MOESI protocol. C? translates this
request into the CXL-MESI flow that would be triggered as if

the directory were performing a load to the CXL cache. In the
second scenario (Fig. 6b), C? receives a BISnpInv message
from the CXL directory in response to the store operation from
host 2. This time C* translates the message into the MOESI
flow that corresponds to a sfore to a virtual cache sitting
between the CXL cache and C*’s directory. It’s important to
highlight that simulating core accesses is a conceptual rep-
resentation and the actual translation mappings are statically
backed into C’s FSM at synthesis time. However, as loads
and stores are universal to any CC protocol, this representation
allows reasoning about C3’s translation behavior in a protocol-
agnostic way.

Transaction nesting. Rule II requires that all forwarded
requests must appear atomic to the origin cache coherence
domain to preserve protocol invariants. This is achieved by
strictly nesting the forwarded transaction within the original
transaction: C> stalls requests to the same cache line from the
origin domain until the forwarded transaction completes. In
practice, C3 consumes the origin request, forwards it to the
other domain, and enters a transient state that progresses only
upon receiving CXL completion messages or snoops.

For instance, in C3? stalls host requests to the
same cache line until receiving the completion message for
the forwarded CXL load, while remaining able to process
other CXL requests and snoops. Such situations are shown
in , where C? receives invalidations before the
completion message for MemRd, A. To resolve these cases, c?
performs a handshake to disambiguate race conditions between
forwarded requests and incoming snoops.

State compounding. As described above, C*’s FSM is practi-
cally a fusion of the FSMs of the local directory controller
and the global CXL cache controller. This means that the
FSM’s states represent the combined (Cartesian) product of
the states from the local and global CC protocols (stable and
transient states), allowing C* to maintain the view and state
of cache lines for both protocols simultaneously. For instance,
with MOESI protocols in both the local and global domain,
the state pair (I, ) denotes that the cache line is absent from
the host, and the pair (I,S) indicates that C*’s CXL cache
holds a clean copy although none of the host private caches
shares it.

Monitoring both the local and global state allows C* to
decide whether a cross-domain transaction is necessary as
required by Rule I. In the scenario depicted in the
state combination (M, M) requires forwarding, while a state
combination like (I, M) would not, and the CXL cache can
reply immediately to the CXL directory.

Note that, enforced by the two design rules, many state
combinations are never reachable. For example, as Rule I
requires globally visible effects to be forwarded, the CXL
cache must remain inclusive of all remote data cached in the
host caches. Otherwise, the CXL directory would not know if
the host has a copy of data that needs to be invalidated upon
receiving a MemRd, A request. Thus, state combinations like
(S,I) or (M,T) must never be reachable which is ensured
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TABLE II: Fragment of C*’s translation table for incoming
CXL directory messages. S represents the current compound
state, X-Access indicates the conceptual cross-domain access,
and Spye.¢ shows the resulting state after the transition.

Host1-MOESI _ _ _ _ _ .3

CXL
L1 cache 1

Directory

Directory

Fig. 7: Conceptual operations of a CXL cache eviction.

during construction of the C3-logic [

C. Flow Translation

To translate flows between coherence domains, we make
two enabling observations. First, dynamic message informa-
tion (e.g., address, tag, senderlD, destinationID) is protocol-
agnostic and can be passed by value. Second, message transla-
tions between domains are deterministic and can be statically
pre-computed.

Based on these observations, C> uses translation tables that
map incoming messages and the current compound state to the
corresponding cross-domain access and resulting nested coher-
ence flow. shows for the situation in a fragment
of these translations for incoming CXL directory messages.
For example, when receiving a BISnpInv in state (M, M),
C? interprets this as a conceptual store operation that needs
to be propagated to the host cache hierarchy. This triggers a
Fwd-GetM message to the host caches and transitions C to the
transient state (MI4, M) (wait for local acknowledgment).
Conversely, the same message in state (I, M) requires no host
involvement and can be directly satisfied with a writeback to
the CXL directory.

We describe in [Sec. V] how these translation tables are
generated automatically during synthesis. These pre-computed
translation rules are then embedded directly into the C>-logic,
introducing no runtime overhead while ensuring correctness
through strictly enforcing the two design rules outlined earlier.

SLocal protocols with self-invalidation, such as RCC, may let host caches
temporarily hold stale data, which appears to violate C? ’s inclusion. This
occurs because CXL invalidations (from the CXL directory or self-evictions)
do not update host caches. However, RCC restores inclusion at each release /
acquire via self-invalidation, which is the intended behaviour and consistent
with the assumptions of RCC that programmers perform explicit synchroniza-
tion to avoid stale data.
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Fig. 8: Example operations with RCC-CXL Bridge. The C?
instance for host 2 is simplified for brevity.

D. Discussion

1) CXL Cache Evictions: To ensure that the CXL cache
stays inclusive, C? must also handle evictions as cross-domain
communications. [Fig. 7 shows the self-eviction of a cache line
where the bridge is in the state (M, M) meaning that one
of the host private caches still holds a dirty copy of the data
which must be reclaimed before evicting the block to memory.
To force the invalidation, C? mimics a store access in the hosts
coherence domain triggering the host cache writeback. Upon
receiving the data C® can proceed with normal eviction by
going through the CXL writeback sequence (as shown in the
first flow of Fig. [2) with the CXL directory. Once the eviction
completes, and a free slot is available in the CXL cache, (o
will proceed with the initial request that caused the eviction.

2) RCC: Relaxed consistency protocols like RCC represent
an interesting case where the CXL cache is not kept strictly
inclusive with host caches. In RCC, C? can directly respond
to invalidations from the CXL directory without host cache
involvement; it is the responsibility of host caches to self-
invalidate to synchronize with C3’s CXL cache. C* only
forwards requests from the host to CXL when the host
accesses uncached data or executes explicit synchronization
instructions like store-release or load-acquire. Nevertheless,
C3 still ensures that the CXL cache stays coherent with
remote memory, such that during synchronization events, the
host never operates with stale data and properly synchronizes
globally with CXL as well.

illustrates a store-release operation in RCC where a
CXL cache is in an invalid state (/) due to a previous store
operation from another host. Thus, before responding to the
host’s store-release request, C3 must first acquire the most
recent data and write permissions from remote memory.

3) Memory Barriers: Memory barriers primarily affect
the CPU by enforcing ordering constraints within the core
pipeline. C* does not directly handle barriers, but indirectly
through the coherence messages and events that the core
generates to implement a barrier. For instance, with SWMR
protocols such as MESI, barriers translate into regular loads
and stores where the core awaits for completion — which C3
handles similarly to regular coherence messages. In weaker
protocols like RCC, where barriers may need to propagate,
cores either translate them into existing cache maintenance



events (flush, invalidate) or specific coherence messages (like
RCC’s load-acquire or store-release messages), which C3
translates and forwards to CXL, as described in |[Sec. IV-D2

4) Hardware Complexity and Integration: C* ’s hardware
consists of two main components: the CXL cache and the C3-
logic, as shown in The primary area overhead originates
from the CXL cache, which must be inclusive of all CXL data
cached by a host. While the above sections describe it as a
dedicated cache for clarity, in practice, it can be integrated
with the LLC. For instance, existing CXL-enabled platforms
from Intel (SPR/EMR processors) already couple LLC slices
with the CXL Caching and Home Agent (CHA) [26]], [50].

The C3-logic implements the fused host-CXL cache coher-
ence protocols as a finite-state machine. Although the synthesis
process involves generating correct request translations, stable
and transients states, and protocol transitions; the resulting
hardware is purely combinational and sequential logic, in-
curring minimal area and power overhead. The translation
tables described in are purely conceptual, used
only by the generator to produce the final state transitions.
Thus, the synthesized hardware does not require table lookup,
as all translations are embedded directly into the generated
FSM. Even though C* enables heterogeneous translations of
requests, the complexity of its logic and its controller latency
are comparable to other conventional hierarchical coherence
controllers, such as those used in Arm’s CHI protocol [14] or
those local coherence directories in multi-socket platforms.

C3 is fully backward compatible with earlier CXL standards
and can be integrated into existing CXL implementations
with minimal effort. In Intel SMR/EMR platforms, only the
controller logic in the CXL CHA needs to be extended with
C%’s stateful coherence logic to support multi-host coherence.
In hybrid memory configurations, C* handles remote CXL co-
herence traffic while local traffic routes to existing controllers
without additional modification.

V. METHODOLOGY

Implementation. We implement C* as a generic model for
gem3, a cycle-approximate simulator widely adopted in com-
puter architecture research [20], [29], [54]. Its detailed memory
subsystem, Ruby [53]], provides an ideal platform for evalu-
ating various CC protocols and their interactions with CXL
memory devices. The gem5 simulator employs SLICC [28]],
a domain-specific language for modeling cache coherence
protocols at an abstract level. While manually implementing
specific protocol combinations in SLICC is possible, our goal
is to create a generic solution that can accommodate various
host and device protocols.

To enable generality and to be able to support arbitrary
input protocols, we developed a generator tool [47] that
takes machine-readable stable state protocol (SSP) specifi-
cations [[66] for both host and CXL CC protocols as input,
merges them, and outputs SLICC code for C>. The tool gen-
erates the C3-logic connecting the host’s cache and directory
controller with the CXL directory controller.

Cores 8-30 coresﬂ 2 GHz, x86/Arm, 8-wide 00O, 192 ROB
L1 cache 128 KiB, 8-way, private, LRU, 1 cycle latency

LLC 4 MB, 8-way, shared, inclusive, LRU

Intra-cluster point-to-point topology, static routing, 72B per flit, 1
Interconnect cycle router latency, 10 cycle link latency
Cross-cluster star topology, static routing, 256B per flit, 1 cycle
Interconnect router latency, 70 ns link latency

CXL Memory DDRS5, 4400 Mhz, 1-channel, 10ns latency

TABLE III: Simulated system parameters.

The generator’s front-end is based on Protogen [66]], which
parses SSP specifications into an intermediate representation
(IR) and generates concurrent FSMs with all stable states for
each input protocol. Next, the tool generates translation tables
by systematically traversing the FSMs of both local and global
protocols, identifying the specific coherence actions required
by C? for each input message and state combination. When
Rule I requires a cross-domain access, the corresponding
nested flow is identified by simulating the core access that
would trigger an equivalent action in the target domain. Using
these translation tables, the tool merges the two FSMs into
a single compound FSM, which is then analyzed to remove
all forbidden states as specified by Rule II. Finally, the tool
generates the complete SLICC code for C3.

Simulation Environment. We use gem5 version 23.1 [20],
[29], [54] in syscall emulation mode (SE) and our previously
described tool to generate SLICC implementations of C* for
various protocol combinations in gem5’s Ruby system. Our
tool has one current limitation: it does not support separate in-
struction and data cache Therefore, we simulate a common
private cache for both instructions and data per core. To make
simulations tractable in a reasonable timeframe, we use small
input sizes and scale the cache sizes and number of cores for
each workload to achieve a similar number of misses per kilo-
instructions (MPKI) as observed in real hardware experiments
on an Intel Sapphire Rapids server [92].

We model a two-node heterogeneous system, mimicking
the one depicted in by splitting the cores into two
clusters, each with its own shared last-level cache (LLC). C3
replaces the LLC controller in each cluster and communicates
with a CXL directory at a remote memory controller (Device
coherency engine (DCOH)) through a high-latency lin We
rely on gem5’s Garnet network model [[19] to simulate com-
munication between hosts and CXL memory, rather than using
dedicated PCle-based CXL simulation models [90]]. Although
Garnet was originally designed as an on-chip network and
real CXL systems communicate over a PCle fabric, Garnet is
tailored for coherence protocols which aligns with our focus
on protocol bridging. We use its flexible network configuration
(link latency, bandwidth, flit size) to align with CXL topolo-

6The number of cores is calibrated for each workload to match approxi-
mately the same MPKI as observed on real hardware.

7 Adding support for separate instruction and data caches is not a method-
ological problem but merely a matter of engineering effort.

8The link latency was determined empirically to match the CXL memory
access latency of 400ns as reported by prior work [57]



gies. It lets us isolate performance effects stemming from
protocol logic and C? from the PCle transport overheads.

We deliberately evaluate a worst-case scenario with all data
in remote CXL memory to maximize coherence traffic and
stress-test C3, while noting that a hybrid configuration, where
only part of the data is remote, might be more practical.

To simulate different MCMs, we use gem5’s needsTSO
flag of the out-of-order core as an alternative to simulating
different ISAs for different clusters. When the flag is enabled,
the default for x86 CPUs, it enforces the TSO MCM. For
Arm cores, the flag is disabled, allowing gem5 to model a
weak MCM. This approach allows us to isolate performance
differences attributable to the MCM, from those tied to ISA-
specific implementation differences in the gem5 models.

lists the complete details of the simulated system
parameters. The implementation of our tool, the CXL con-
trollers in gem5’s SLICC code, and our experimental setup

are publicly available (see the [artifact appendix].

Workloads. We evaluate C* using 33 highly parallel applica-
tions from three benchmark suites: Splash-4 [32|], PARSEC [2]]
and Phoenix 73], which are widely used to evaluate concur-
rent workloads in multi-core scenarios.

VI. EVALUATION

We show C3 to be correct, generic, and non-intrusive (in
terms of changes to existing hardware and performance) while
maintaining compatibility with each host’s MCM.

A. Correctness

Formal Verification. We verify the correctness of C3’s FSMs
and SLICC controllers. To verify C¥s FSMs, we extend
our generator tool with a backend that follows the same
Murp-based formal verification methodology introduced in
HeteroGen [68]: We use the herd7 [6] tool to generate litmus
tests for sequential and relaxed consistency threads, including
common checks like IRIW, MP, 2+2W, CoRRI1, CoRR2, LB,
R, RWC, S, SB, WRC, WRW+2W, and WWC. To map these to
our heterogeneous setups, we consider all possible assignments
of threads to sequential and relaxed consistency clusters.
The litmus tests for the weaker MCM are refined by using
ArMOR [55] to remove fences that are no longer required
when combining with the stronger MCM, as proposed in [68]].
Using the Mury model checker, the FSMs were verified to
never reach any forbidden outcome for a mix of cores from
sequential and relaxed consistency clusters. This ensures that
C3 retains the local MCM of each host.

Litmus Tests. To increase confidence in the SLICC con-
trollers, which realize the FSMs, we empirically evaluated
litmus tests in our gem5 simulation environment. For this,
we configured a 2-cluster setup with 8 ARM O3 cores per
cluster. We distributed litmus test threads equally across two
MESI clusters, connected via C? to CXL at the global level.
Our evaluation included seven common litmus tests: MP, IRIW,
2 2W, R, S, SB and LB, generated using the herd7 tool [6] and
partially based on prior work [31].

MESI-CXL-MESI MESI-CXL-MOESI

Test Arm-Arm TSO-Arm TSO-TSO Arm-Arm TSO-Arm TSO-TSO
2_2W-sys v v v v v v
IRIW-sys v v v v v v
LB-sys v v v v v v
MP-sys v v v v v '
R-sys v v v v ' '
S-sys v v v v v v
SB-sys v v v v v v

TABLE IV: Litmus test results for different protocol and MCM
combination. The v'symbol indicates no forbidden outcomes.

We executed each litmus test one hundred thousand times
in gem5 for each of the following configurations: (a) same CC
protocols and same MCMs in both clusters, (b) different CC
protocols, same MCMs, (c) same CC protocols but different
MCMs, (d) different protocols, different MCMs. In configura-
tions (a) and (b), across all tests, we encountered no forbidden
outcomes under the host’s local MCM, confirming that C?
maintains consistency by enforcing appropriate orderings. To
guarantee that the litmus tests will detect forbidden outcomes
and that C* does not introduce stronger memory ordering
guarantees than the compound memory model defines, we
intentionally removed all synchronization primitives from the
litmus tests. As expected, these modified tests produced at
least one forbidden outcome in each case, serving as a control
to verify that our tests don’t invariably pass unconditionally.

In configurations (c¢) and (d) with heterogeneous MCMs,
we run the same litmus tests with the needsTSO flag enabled
on cores of one of the two clusters, thereby enforcing a
stronger TSO MCM for these cores only. As expected, having
a stronger MCM in one cluster does not change the litmus test
results—all tests pass without exhibiting forbidden outcomes.
Next, we want to validate C*’s ability to reconcile heteroge-
neous MCMs, i.e., C? strictly propagates local memory guar-
antees to the global CXL memory. To this end, we run again
the same litmus tests for (¢) and (d), while selectively remov-
ing memory fences on the threads mapped to the TSO cores.
Since we know that TSO cores naturally enforce store-store
memory order, litmus tests should not exhibit any forbidden
outcomes when TSO cores execute threads without explicit
store-store fences. In these runs, we observe no forbidden
outcomes, as expected. For instance, in the MP litmus test,
thread #1 executes a series of stores that thread #2 reads
in reverse order. With memory fences disabled on thread #1
on a TSO core, we observe no forbidden outcomes.

For our validation to be complete, we must also check
whether forbidden outcomes can be observed when other types
of fences are removed (e.g., load-load or load-store). As
expected, when removing more fences from the TSO cores,
we start observing forbidden outcomes. Similarly, when we
disable synchronization primitives on the ARM cores, we also
observe forbidden outcomes. For instance, in the MP test, if we
disable the acquire event from thread #2 on an ARM core,
although a TSO thread #1 provides strongly ordered stores,
we can still observe reads out-of-order from the ARM core.
Overall, this validates that C? strictly propagates guarantees
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Fig. 9: Performance comparison of heterogeneous MCMs in
two scenarios: homogeneous and heterogeneous CC protocols.

from each individual memory model, and does not violate
or strengthen the global memory consistency defined by the
compound MCM.

In we summarize all combinations of CC protocols
and MCMs tested for each litmus test. The first and last
elements of each protocol combination represent the local
coherence protocols of the two clusters, with CXL serving
as the global protocol connecting them. A v'symbol indicates
all tests passed—meaning all allowed outcomes were observed
without any forbidden outcomes. The consistently correct re-
sults across all protocol combinations and MCMs demonstrate
that C? always propagates each cluster’s memory consistency
guarantees into the global memory, for every underlying local
coherence protocol and memory model.

These empirical gem5 results, combined with HeteroGen’s
Murphi-based verification, confirm that C* always correctly
bridges heterogeneous coherence protocols with CXL and
successfully reconciliates heterogeneous hosts’ local MCMs.

B. Generality

Having validated that C*> maintains the intended memory
consistency guarantees, we evaluate now its general usability
by running 33 parallel benchmarks from three different suites
across diverse MCM and CC protocol combinations.

We evaluate C> across two dimensions. First, we test three
different MCM combinations while keeping the CC protocol
fixed to MESI-CXL-MESI: all cores implementing the ARM
MCM, all cores implementing TSO, and a heterogeneous setup
with the ARM MCM in the first cluster and TSO in the second
cluster. Second, we change the CC protocol in the second
cluster from MESI to MOESI to evaluate C? with mixed
MCMs and mixed CC protocols simultaneously.

The left part of shows the mean performance of
each benchmark suite for the homogeneous MESI-CXL-MESI
combination, normalized to the ARM-MCM setup. Switching
from the weak ARM-MCM to the stronger TSO-MCM results
in a 22-39% performance degradation. This degradation is
expected and aligns with prior work on binary translation [34],
[75], [77], where enforcing TSO on Arm architectures can
impact performance by up to 75% (avg. 48%) for similar
workloads [34ﬂ

In the mixed setup where only the second cluster im-
plements TSO, the performance degradation is only 2.6-

9While binary translation enforces TSO through software fences and our
approach through hardware, both approaches limit the same memory ordering
optimizations that contribute to ARM’s performance advantages.

12.7%, demonstrating that C> efficiently bridges heteroge-
neous MCMs hindering performance of the weaker memory
model.

The same trends hold when CC protocols also differ be-
tween clusters. In the right part of using the strong
TSO MCM in the heterogeneous MESI-CXL-MOESI protocol
setup results in a degradation of 22-43% compared to the weak
ARM MCM. With different MCMs and CC protocols in each
cluster (ARM/TSO) results in only a 2.2-14.4% slowdown.

The key takeaway is that C* successfully and efficiently
bridges arbitrary combinations of CC protocols and MCMs,
even when both differ simultaneously between clusters.

C. Performance

We evaluate C3’s performance in more depth using the same
33 parallel benchmarks as in the previous section. For this
experiment, we are running on x86 gem5 out-of-order models.
Our primary focus in this section is on performance differences
between CC protocol combinations, so we keep the MCM
fixed. For fair comparison, we modify only the local and global
protocols. Parameters for link latency, topology, and cluster
configuration remain the same across all experiments.

Our baseline system (MESI-MESI-MESI) uses a homogeneous
but hierarchical setup with MESI as both local and global
protocols. In this configuration, C* functions as a passive
device, simply forwarding inter-cluster coherence requests
one-to-one between the local and global coherence domains.

We compare this all-MESI baseline against three al-
ternative protocol combinations. In the first combination
(MESI-CXL-MESI), we replace the global MESI protocol with
CXL, representing a system where two homogeneous host
clusters share remote memory via CXL. In this setup, C3
must perform active protocol translation to communicate with
the CXL directory. In the second and third combinations
(MESI-CXL-MOESI, MESI-CXL-MESIF), the MESI protocol in the
second cluster is replaced with MOESI and MESIF, respec-
tively, creating truly heterogeneous systems with two different
local CC protocols communicating via CXL at the global level.

shows the execution time of all 33 parallel ap-
plications, normalized to the MESI-MESI-MESI baseline. Most
benchmarks demonstrate limited sensitivity to different pro-
tocol combinations. However, switching the global protocol
to CXL results in consistent slowdowns across all three het-
erogeneous protocols compared to the baseline, as seen in the
Mean section of In detail, the performance degradation
for the configurations MESI-CXL-MESI, MESI-CXL-MOESI, and
MESI-CXL-MESIF are respectively 4.0-26.6% (avg. 5.5%), 3.9-
28.6% (avg. 5.7%), and 4.0-29.4% (avg. 5.5%). The F and
O states provide intra-cluster optimizations, whose effect are
dwarfed by the longer cross-cluster CXL latencies.

1) Performance Analysis of CXL Slowdowns: In[Fig. 11} we
show the cache miss latency breakdown by instruction types,
grouped in 3 miss latency ranges, comparing MESI-MESI-MESI
and MESI-CXL-MESI in 3 of the most impacted workloads
(histogram, barnes, lu-ncont) with 19-25% more miss cycles,
and one of the least impacted workloads (vips) with 2.2% more
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Fig. 10: Performance comparison of heterogeneous CC protocol combinations normalized to MESI-MESI-MESI baseline.
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Fig. 11: Breakdown of total miss cycles by request latency
and instruction. Selected workloads show surging high-latency
accesses with CXL, while vips exhibits minimal sensitivity.

miss cycles. We see that the increase in miss latency directly
correlates with the slowdown in To understand the
cause, we break the misses into three groups: low (< 75ns),
medium (75-400ns), and high (> 400ns) latency misses. Since
400ns is the typical round-trip latency of memory requests,
the three categories broadly map to: intra-cluster coherence
transactions (L2 or LLC misses), CXL memory access, and
cross-cluster coherence transactions. Affected workloads see
an increase only in the high-range (remote-cluster) access by
2.9x, for stores or RMWs (read-modify-writes) and loads.
Since the number of misses is unchanged for MESI and
CXL, it indicates that cross-cluster coherence transactions are
costlier with CXL, for both read and write requests.

For write requests (store, RMW) with remote cluster inval-
idation, CXL’s overhead stems from a more complex trans-
action flow. MESI handles them in 3 remote message delays:
GetM (cache to dir) — Fwd_GetM (dir to owner) — GetM_Ack
(owner to cache). Additionally, the MESI dir can pipeline
requests to the same address without waiting for any response.
Conversely, CXL requires 6 remote message delays when the
owner is dirty (4 when clean) with 2 blocking transient states
at the directory (cf.[Fig. 3)), preventing pipelining and doubling
message complexity compared to MESI.

For read requests (loads) with remote owner invalidation,
CXL also has higher complexity (4 vs 3 message delays),
but it mainly suffers from convoy effect from the blocking
transient states of its directory (from both loads and stores).
We confirmed it with an additional analysis of address access

frequency at the memory controller, where we detected some
cache lines are hot-spots for both read and write across the two
clusters, in CXL-sensitive applications. From the miss latency
distribution in we see that loads with medium-range
latency are further delayed with CXL into the high-range.

In summary, CXL slowdowns are inherent to its protocol
design and independent of C>. Note that CXL uses more di-
rectory handshaking and lacks peer-to-peer responses between
hosts, because CXL is designed to cope with network message
re-orderings and dynamically changing hosts in sharer lists.

VII. RELATED WORK

CXL systems. CXL is emerging as a promising technology

with widespread support from industry [25], [40], [61], [70].
Most related work aims to use CXL memory for memory
tiering (layering) [46], [48], [57], [79], [82], [83], [94], [98]
and memory pooling (sharing) [17], [18]], [36]], [80], [81].
Beyond these applications, numerous studies have investigated
CXL to improve a wide range of distributed systems and
applications [4]], [9]l, (6], [37], [49], (56, (85, [91]I, [97].
Evaluations of real CXL hardware have primarily focused
on its use to realize memory expanders [51]}, [52]], [86]. Multi-
host coherence, as defined by CXL 3.0, was not studied so far
on real hardware due to the lack of commercially available
hardware supporting this feature. While different CXL-based
systems have been assessed through both emulation and simu-
lation [9], [12], [35], [44], [48], [57], [72], [89], (93], [95], no
prior work, to the best of our knowledge, has examined CXL
within a heterogeneous multi-host coherence setup. To address
this gap, we present C3 to guarantee predictable and consistent
behavior across heterogeneous multi-host CXL systems.

Heterogeneous cache coherence. Various industry stan-

dards [14], [22]), [24], aim to enable heterogeneous

cache coherence in multicore architectures. Prior work has
proposed both manual [], [45]], [65]] and automated [66]—
[68]l techniques to combine protocols that bridge the semantics
of heterogeneous architectures. These methods suffer from
assumptions on a static architecture and/or a lack of generality.
They either use merged directories , , which prevents
dynamically connecting new hosts or they realize custom
interfaces [65], that only support SWMR protocols.
Notably, neither of these provides a comprehensive method
for how arbitrary heterogeneous protocols can be combined



within a hierarchical framework. To address this limitation,
we develop design rules for heterogeneous CXL systems.

Memory consistency models. A clear MCM is often missing
in past heterogeneous cache coherence work. Dedicated works
such as Memglue [21]] propose modifying coherence con-
trollers to orchestrate coherence protocols, thereby realizing
a MCM that aligns with the C memory model. In contrast,
compound memory models [31], [63], [68]] define a more
lightweight approach that preserves the local MCM semantics
of all hosts. However, these and similar approaches [27], [41]]
are specific to their target systems and do not apply CXL.
Formalization for CXL has been presented recently [84] but
currently omits CXL.mem and multi-host coherence. C*’s de-
sign and rules produce a compound MCM for CXL coherence.

VIII. CONCLUSION

This work presents C3, a CXL coherence controller that
overcomes interoperability challenges arising from the mis-
match of coherence protocols and memory consistency mod-
els in heterogeneous CXL-connected systems. C* reconciles
disparate cache coherence protocols by synthesizing protocol
bridges, which we validate through formal verification and
performance evaluation across diverse workloads. Our results
demonstrate that C* preserves host memory consistency se-
mantics while incurring minimal performance overhead.
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ARTIFACT APPENDIX
A. Abstract

This artifact provides a gem5-based implementation of C3,
along with instructions to reproduce the evaluation results
of this work. The repository includes detailed guidance on
using the models, installing dependencies, and compiling the
benchmarks from scratch.

To facilitate the use of the artifact, we also provide a Docker
container with its Dockerfile to set up the environment
with all required dependencies.

Additionally, to save compilation time for the workloads and
all 6 gem5 model variants of C? (approx 30min-1h30 on 128-
core server), we offer a prebuilt Docker image that includes
all compiled binaries for C3 (models and workloads), ready to
run the simulations.

B. Artifact check-list (meta-information)

o Compilation: GCC 11.4.0, SCons 4.0+, Python 3.10+, and all
gemS5 [29] v23.1.0.0 dependencies

o Data set: PARSEC 3.0, SPLASH-4, Phoenix-2.0; Litmus tests:
IRIW, 2_2W, LB, MP, R, S, SB (generated with Herd7 [6]])

o Run-time environment: Ubuntu 22.04 LTS or 24.04 LTS
(native or Docker container)

o Metrics: Execution time.

« Experiments: Use the provided scripts to evaluate the execu-
tion times of different cache coherence protocol combinations.

o How much disk space is required? (approx): Total: ~30 GiB.
Breakdown: gemS5 builds: ~23 GiB, PARSEC: ~5 GiB, other
benchmarks: <1 GiB, experiment outputs: <1 GiB.

o How much time is needed to prepare workflow? (approx):
~1-3 hours to compile all gem5 variants; ~30 minutes to
compile the workloads.

o« How much time is needed to complete experiments? (ap-
prox): ~4-12 hours for the full experiment suite (Figure 9,
10, 11, and litmus tests) on a 32-core server.

« Publicly available: Yes

o Code licenses: MIT

o Archived (DOI): |https://doi.org/10.5281/zenodo.17828238

C. Description

1) How to access: The source code is publicly available on
GitHub (https://github.com/TUM-DSE/C3) or Zenodo (https:
//doi.org/10.5281/zenodo.17828238)).

2) Hardware dependencies: The artifact can be evaluated
on any general-purpose CPU with at least 30 GiB free disk
space to build and run gem5. We recommend running the
experiments on a server with at least 32 cores to speed up
compilation and simulation.

3) Software dependencies: We recommend running all
compilation and experiments inside a docker container with
the Dockerfile provided. Thus, the only software dependency is
a working Docker environment. Alternatively, a Ubuntu 22.04
or 24.04 installation can be used (native, container or VM).
To run the artifacts natively, refer to the artifact repository for
additional instructions to setup the environment.

4) Data sets: The artifact includes the source code
and instructions to build the workloads from source. We
also provide the compiled binaries as a Docker image on
DockerHub (https://hub.docker.com/r/gingerbreadz/c3-artifact-
prebuilt/). To build from source, use the Build scripts as
noted in the instruction README.

D. Installation

The artifact repository contains all necessary components,
including the gem5 simulator, benchmark suites, and experi-
ment scripts. For each component, we provide detailed build
instructions in its respective README section.

To build gem5 with all protocol variants (MESI-MESI-
MESI, MESI-CXL-MESI, MESI-CXL-MOESI, MESI-CXL-
MESIF) for both X86 and ARM architectures, please fol-
low the instructions in Build gemb| section of the artifact
README.

To build the benchmarks, please follow the instructions in
Build Benchmarks! section of the artifact README.

To run the experiments, you need first to run the
workload configurations script (Generate Workload
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https://github.com/TUM-DSE/C3#build-benchmarks
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Configurations) and then run the experiments. Detailed
instructions are available in Run Experiments.

E. Evaluation and expected results

Once all experiments have been completed, the run script
will create plots for [Fig. 9} [Fig. 10} [Fig. 11} and [Tab. TV] and
place them into the data folder. The figures should match
the ones in the paper.

FE. Methodology

Submission, reviewing, and badging methodology:

o https://www.acm.org/publications/policies/artifact-

review-and-badging-current

o https://cTuning.org/ae
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