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In a world of scalable data centers

● Memory is a critical resource for data centers,
● But is not efficiently managed:

● $$$ wasted in energy and hardware

The Promise of CXL
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CXL promises on-demand allocation from remote memory chassis

¹ Reidys et al., Coach: Exploiting Temporal Patterns for All-Resource Oversubscription in Cloud Platforms, ASPLOS’25
² Li et al., Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS’23
³ Tirmazi et al., Borg: the next generation, EuroSys’20

Over-provisioning¹
Low avg. usage 

(~40%)² 
Stranded memory

(up to 25%)³



Hardware-based main memory disaggregation (remote DRAM pooling)
The CXL memory abstraction
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load/store 
interface

Fine-grain
data transfers

(64B)

Cache-coherent 
accesses

Shared Memory 
abstraction+ + ➭

Physica Mem.

Compute Node 1

Mem Node

CXL Interco

An hardware-based abstraction:

○ Hosts map remote CXL memory regions as physical ranges

○ Data moves transparently to local CPU caches

Compute Node 2



Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

The CXL memory abstraction
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But, Is CXL ready for modern data centers?

Universal 
load/store 
interface

Fine-grain
data transfers

(64B)

Cache-coherent 
accesses

Shared Memory 
abstraction+ + ➭



x86, ARM, GPUs, Domain-specific accelerators
… and the trend only keeps growing!

No, Modern Data Centers are Heterogeneous!
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Current CXL hardware (& specifications) 
do not support heterogeneous architectures



Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?
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Memory Node

PCIe

Compute Node

Physical Mem

CXL InterconnectMESIF MOESI

CXL.mem

x86-TSO Weak

How to interoperate vendor-specific cache-coherence for CXL, and avoid memory consistency bugs?

Intel ARM

Heterogeneous protocols

Intuition:
Extend MOESI & MESIF 
to “talk” with CXL 

What MCM ?



How to extend heterogeneous architectures for CXL shared memory?
➪ Vendors must re-design host-specific coherence protocols for CXL interoperability 

The Challenges
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Problem Statement: How to systematically and correctly
extend heterogeneous architectures for CXL memory?

Diverse

Many vendor-specific
coherence protocols (CC) and 
memory consistency models 

(MCMs)

Complex protocols

Large state machines (~20 
states, ~40 transitions) tightly 

coupled to host’s MCMs

Semantic gap

Manual & ad-hoc translation of 
host-specific coherence 

requests to CXL protocol

1 2 3



C³: CXL Coherence Controllers for Heterogeneous Architectures
Our Proposal: C³ 
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Genericity

Applicable to any
(existing and upcoming) 

architectures

Non-intrusivity

Avoid internal modifications to 
hosts (coherence & MCM), 

or to CXL 

Correctness

Preserve by construction
original host MCMs

Our Solution: Pluggable coherence bridges controllers to translate
host-specific coherence protocols to CXL and to preserve original memory semantics

1 2 3



Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation 
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build 
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)
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C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

24
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Design: The C³ Compound State Machine
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- Host GetM request (    -     ) encapsulates the CXL transaction (    -     )  

GetM

GetM_Ack

2

1

MemRd_ACmp_E 3

5

4

store hit 6

2 5 3 4
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C³ propagation rules: Atomicity & Delegation



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

34

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor

35

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain

36

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

store4



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

37

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

38

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

39

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State

BISnpInv M,M 

3



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

40

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State

Cache 
access

BISnpInv M,M store

3 1



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

41

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State

Cache 
access

Translated 
access

BISnpInv M,M store store

3 1 4



How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

42

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State

Cache 
access

Translated 
access

Action Next state

BISnpInv M,M store store Send Fwd_GetM to local owner

3 1 4 5



store
How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

43

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

Fwd_GetM

BISnpInv

5

3

2
MemRd_A

C³
CXL.mem

MESIF

Origin Transaction Propagated Remote Transaction

Incoming 
Message

Current 
State

Cache 
access

Translated 
access

Action Next state

BISnpInv M,M store store Send Fwd_GetM to local owner MIA, MI

1

CXL cache

store4

3 1 4 5



Implement C³ controller logic with gem5 cache coherence models (SLICC)

Generate C³ controllers² from protocol specifications (PCC¹):
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¹ Oswald et al., ProtoGen: Automatically Generating Directory Cache Coherence Protocols from Atomic Specifications, ISCA’18
² Lefort et al., vCXLGen: Automated Synthesis and Verification of CXL Bridges for Heterogeneous Architectures, ASPLOS’26



We evaluate C³ through gem5 simulations:

● SE syscall-emulation, Ruby memory subsystem, Garnet interconnect network models
● O3 out-of-order CPU models
● SLICC DSL to implement all CC controllers (incl. C³)

System model:
3 heterogeneous clusters: 2 hosts + 1 CXL fabric (w/ remote memory)

Evaluation: Methodology
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● O3 out-of-order CPU models
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Example combination: MESI_CXL_MESIF with Arm_Tso



We answer the following evaluation questions:

● Correctness: the C³ logic (FSM) and SLICC controllers?
○ Can C³ correctly reconcile heterogeneous MCMs?
○ Can C³ correctly interoperate heterogeneous CC protocols?

● Genericity: Is C³ applicable to different heterogeneous host protocols and MCMs?

● Performance: What are the overheads of the C³ methodology?

47

Evaluation: Goals



Does C³ really enforce Compound Memory Consistency in gem5?

Workloads: 7 litmus tests generated with herd7¹ for ARM ISA
Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs

Observation: No forbidden outcomes (disallowed by hosts’ MCM) after 100,000 executions of each test

48

Evaluation: Correctness

¹ herd7 consistency model simulator: https://diy.inria.fr/www/

Takeaway: C³ successfully preserve host native MCMs with CXL memory



Can C³ reconcile heterogeneous MCMs and protocols?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)

Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs 

Observation:
- The weaker the MCM, the faster workloads run (on avg., exec. time: Arm < Arm_TSO < TSO)

- Weak MCM is not penalized by strong MCM in Arm_TSO
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Evaluation: Genericity

Takeaway: C³ composition of MCMs is not overly strong (preserves weak MCM performance)



Takeaway: C³ logic overheads are negligible, CXL.mem performs worse than textbook MESI 

What are the overheads of C³ controllers?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)

Baseline: unified homogeneous MESI (MESI-MESI-MESI) -> conventional MESI LLC instead of C³

Observations:
1- C³ overheads are negligible in most workloads 
2- All CXL variants are significantly slower for some workloads (e.g., barnes, lu-ncont, histogram) 

Additional analysis: CXL.mem is slower than textbook MESI (more handshaking & memory traffic)
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Evaluation: Performance



C³ key ideas:

● 2 propagation rules: Delegation & Atomicity: forward coherence transaction effects to other domains

● Request semantic translation: leverage correct equivalent transaction in other coherence domains

● FSM compounding: Couple FSMs of host directory & CXL cache to implement C³ logic

Solution: C³
Pluggable coherence bridges that translate per-host coherence transactions to CXL & preserve original semantics 

Problem: 
How to systematically and correctly extend heterogeneous architectures for CXL memory?
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Conclusion

Motivation: 
CXL does not support heterogeneous architectures


