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The Promise of CXL

In a world of scalable data centers

e Memory is a critical resource for data centers,
e Butis not efficiently managed:

$\ Over-provisioning' MO VD LR I“_‘b@%] Stranded memory
g & (~40%) =R (up to 25%)3

$$$ wasted in energy and hardware

CXL promises on-demand allocation from remote memory chassis

"Reidys et al., Coach: Exploiting Temporal Patterns for All-Resource Oversubscription in Cloud Platforms, ASPLOS’25
2Li et al., Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS’23
3 Tirmazi et al., Borg: the next generation, EuroSys’20
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The CXL memory abstraction

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

Universal Fine-grain

e (@ dhe e @ Cache-coherent E> Shared Mgmory
. accesses abstraction
interface (64B)

Mem Node

An hardware-based abstraction:

! Xinterco * O  Hosts map remote CXL memory regions as physical ranges

\
Physca mer. ™y IZ\-] O Data moves transparently to local CPU caches

Compute Node 1 Compute Node 2




The CXL memory abstraction

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

Universal Fine-grain

e (@ dhe e @ Cache-coherent E> Shared Mgmory
. accesses abstraction
interface (64B)

But, Is CXL ready for modern data centers?



No, Modern Data Centers are Heterogeneous! T|_|T|

x86, ARM, GPUs, Domain-specific accelerators
... and the trend only keeps growing!

£) Google Cloud

nted arm € XILINX. $#

E AMDZY

Current CXL hardware (& specifications)

b RISC

do not support heterogeneous architectures



Why is CXL hard for heterogeneous architectures?
Mismatch of CC protocols and memory consistency models (MCMs)

=  Each host architecture is tailored for a CC protocol and MCM
=  CXL protocol specifications do not cover interoperation with heterogeneous architectures

Memory Node

Physical Mem
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Why is CXL hard for heterogeneous architectures? T|_|T|
Mismatch of CC protocols and memory consistency models (MCMs)

=  Each host architecture is tailored for a CC protocol and MCM
=  CXL protocol specifications do not cover interoperation with heterogeneous architectures

Memory Node

What MCM?
o Heterogeneous protocols
MESIF _ | MOESI

f .
1 7’ 7’ |
Physical Mem | |x86-TsO|| 1
Compute Node o & :
== Intel -—"

How to interoperate vendor-specific cache-coherence for CXL, and avoid memory consistency bugs?
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Why is CXL hard for heterogeneous architectures? T|_|T|
Mismatch of CC protocols and memory consistency models (MCMs)

=  Each host architecture is tailored for a CC protocol and MCM
=  CXL protocol specifications do not cover interoperation with heterogeneous architectures

Memory Node

What MCM ?
o Heterogeneous protocols
Intuition:
MESIF - = : YO Extend MOESI & MESIF
Physical Nle;m e to “talk” with CXL

Compute NO(:je

How to interoperate vendor-specific cache-coherence for CXL, and avoid memory consistency bugs?
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The Challenges TUT

How to extend heterogeneous architectures for CXL shared memory?
> Vendors must re-design host-specific coherence protocols for CXL interoperability

1 Diverse 2 Semantic gap 3 Complex protocols

®

Many vendor-specific

. : . Manual & ad-hoc translation of Large state machines (~20
conerence pro.toco s(Egjar host-specific coherence states, ~40 transitions) tightly
memory consistency models ,
requests to CXL protocol coupled to host’s MCMs

(MCMs)

Problem Statement: How to systematically and correctly

extend heterogeneous architectures for CXL memory?

17



Our Proposal: C

TLTI

C3: CXL Coherence Controllers for Heterogeneous Architectures

Our Solution: Pluggable coherence bridges controllers to translate

host-specific coherence protocols to CXL and to preserve original memory semantics

1 Genericity
%)

Applicable to any
(existing and upcoming)
architectures

2 Non-intrusivity

©
@{ N
Avoid internal modifications to
hosts (coherence & MCM),
or to CXL

Correctness

)

Preserve by construction
original host MCMs

18



Overview: C? bridges for CXL interoperability TI.ITI

Abstraction: C sits at the interface between hosts and CXL e L

c Memory Pool
Key ideas:
|
e  Clogic to perform semantic & context-aware translation Pl
between host and CXL protocol requests/responses I

[ CXL Interconnect ]

e  Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

Local Memory

e No change required to host protocol, MCM, CXL protocol, Pl
or compiled program binaries

Directory [_| LLC

Contributions: [ Host Interconnect ]

e  Systematic and generic methodology to build
host-specific C controllers from protocol specifications Private cache Private cache

Core Core

e  Correct-by-construction (formally verified)

Compute Node
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Abstraction: C sits at the interface between hosts and CXL e L

c Memory Pool
Key ideas:
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between host and CXL protocol requests/responses I

CXL Interconnect ]

e  Preserve host memory orderings, regardless of other [
heterogeneous hosts sharing the same CXL region

CXL reg/resp

Local Memory

3
e No change required to host protocol, MCM, CXL protocol, Pl C -
or compiled program binaries Cache Logic

Directory || LLC

Host req/resp

Contributions: | Host Interconnect |
e  Systematic and generic methodology to build
host-specific C controllers from protocol specifications Private cache Private cache

Core Core

e  Correct-by-construction (formally verified)

Compute Node
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Design: The C Compound State Machine TI_ITI

C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL Memory Pool
I
Directory

|

CXL Interconnect

C composes transactions between host protocol and CXL.mem

Cache :| C logic

Directory

)

Host Interconnect

Private cache

Core
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Directory
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»

N\
) Getm
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/

Private cache

é} store

Core

25



Design: The CC Compound State Machine

C combines the FSMs from host directory & CXL cache
C appears as a directory to hosts, and caching client to CXL

C composes transactions between host protocol and CXL.mem

e (C propagates requests that produce globally visible memory updates

TLTI

Memory Pool
|
Directory
7
/ ‘\
7 \
CXL Interconngct
Cmp_E @ MemRd_A
\ /
. —
Cache 3
C logic
Directory
»
Y
) Getm

Host lntercon}nect

/
/

Private cache

@5 store

Core
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TLTI

Memory Pool
|
Directory
7
/ ‘\
4 \
CXL Interconngct
Cmp_E @ MemRd_A
\ /
. —
Cache .
C logic
Directory
i ¥
7 Y
7 ) Getm
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Design: The CC Compound State Machine

C combines the FSMs from host directory & CXL cache
C appears as a directory to hosts, and caching client to CXL

C composes transactions between host protocol and CXL.mem

e (C propagates requests that produce globally visible memory updates

Example:
- Host GetM request (@- () encapsulates the CXL transaction (3)- @)

TLTI

Memory Pool
I
Directory
7
/ ‘\
' \
CXL Interconnegct
Cmp_E @ MemRd_A
\ Vs
. -
Cache .
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Directory
i »
7 A Y
/ ) Getm
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4 ,
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Design: The C Compound State Machine TI_ITI

C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL 7 e
\@>\ |
C composes transactions between host protocol and CXL.mem MemBdIa Directory
/
4
e (C propagates requests that produce globally visible memory updates BISnpmV%L Interconnect
\
R
Cache :|C3 logic
Directory
Example:
- Host GetM request (@- () encapsulates the CXL transaction (3)- @) Host Interconnect

Private cache

Core
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C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL Memory Pool
\G)\ |
C3 composes transactions between host protocol and CXL.mem MemBdIa Directory
/
7
e (C propagates requests that produce globally visible memory updates " Snpmv%L Interconnect
e (C propagates CXL requests that change local cache permissions |

=
Cache :|C3 logic
Directory
. »
Example: ’ p;
) 7 (3) GetM_Ack
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Private cache
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C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL . | "":mwy Pool
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. -
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/ \
7 \
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Example: S \@G —
7 etM_Ac
- Host GetM request (@- 6)) encapsulates the CXL transaction (3®- @) Ewdl Gag oSt Intercondect
B A
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Design: The C Compound State Machine TI_ITI

C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL . | "":"‘“V Pool
\GD\mp_ —
C composes transactions between host protocol and CXL.mem MemRd_A D':e°t°ry‘
/ \
7 \
3 ici CXL Interconngct
e (C propagates requests that produce globally visible memory updates BiSnpin 39 T
e (C propagates CXL requests that change local cache permissions \\‘ R
Z
Cache :| C logic
Directory
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Example: T ‘\@G .
e C
- Host GetM request (@- () encapsulates the CXL transaction (3)- @) N st Intercondect 7]
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Private cache
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Design: The C Compound State Machine TI_ITI

C combines the FSMs from host directory & CXL cache

C appears as a directory to hosts, and caching client to CXL . | "":"‘“V Pool
\@)\mp_ —
C composes transactions between host protocol and CXL.mem MemRd_A D':ecmry‘
/ \
7 \
isi CXL Interconngct
e (C propagates requests that produce globally visible memory updates BiSnpin 39 T
e (C propagates CXL requests that change local cache permissions \\‘ R4
Z
Cache :|C3 logic
Directory
Example: T *
_ 7 (4) GetmM_Ack
- Host GetM request (@- 6)) encapsulates the CXL transaction (3®- @) EalGem 155t nterconrect
- CXL snoop request (@-()) encapsulates the host transaction (3)- @) A
Private cache
C propagation rules: Atomicity & Delegation Core
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Design: Semantic Request Translation
How to build the CC Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

MESIF

TLTI

Memory Pool

Directory

4
7
BISannv@’
—A

| Cache |

| Directory |

c3

Private cache

Core
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Design: Semantic Request Translation
How to build the C: Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

® Deduce access performed by original requestor

@ store

TLTI

CXL cache Memory Pool

I
Mede\%D\ Directory

MESIF

4
7
BISannv@
—A

| Cache |

| Directory |

CB

Private cache

Core
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Design: Semantic Request Translation
How to build the C: Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

e Deduce access performed by original requestor
e |dentify equivalent access in remote domain

@ store

TLTI

CXL cache Memory Pool

I
Mede\?\ Directory

MESIF

4
7
BISannv®/
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| Cache |
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| Directory |
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Design: Semantic Request Translation
How to build the C: Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

® Deduce access performed by original requestor
e Identify equivalent access in remote domain
e Simulate equivalent access to start local transaction

TLTI

@ store

CXL cache Memory Pool

I
Mede\?\( Directory

4
7
BISannv®/
—A

| Cache |

: (@) store (3
A4

| Directory |
7

V3

/7
/

Fwd_GetM (5)
4

Private cache

Core
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Design: Semantic Request Translation TI_ITI

How to build the C: Compound State Machine? @store
Idea: Core accesses as universal semantics — 1oad, store, evict, fence XL cache Memory Pool
. . . . I
Transaction translation principle: Mede\_?\‘ Directory
7
7
® Deduce access performed by original requestor Bisnpinv (3)’
. . : : A
e |dentify equivalent access in remote domain [ cache |
L] . L] I
e Simulate equivalent access to start local transaction (@ store 3
\ J
Translation table: [ sy |
7/
/
Origin Transaction Propagated Remote Transaction Fwd GetM @
Incoming Current ‘
Message State Private cache
Core
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Design: Semantic Request Translation
How to build the CC Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

e Deduce access performed by original requestor
e Identify equivalent access in remote domain
e Simulate equivalent access to start local transaction

Translation table:

Origin Transaction Propagated Remote Transaction

Incoming Current
Message State

BISnpInv | M, M

6

TUTI

CXL cache Memory Pool

I
Mede\?\ Directory

4
7
BISannv@’
—A

CXL.mem | cache |

: (@) store (3
v _

Directory |
7

V3

/7
/

Fwd_GetM (5)
4

Private cache

MESIF |

Core

39



Design: Semantic Request Translation
How to build the CC Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

® Deduce access performed by original requestor
e |dentify equivalent access in remote domain
e Simulate equivalent access to start local transaction

Translation table:

Origin Transaction Propagated Remote Transaction
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Message State access
BISnpInv M,M store
® ®

@ store

TLTI
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MESIF
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Directory

4
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Design: Semantic Request Translation
How to build the CC Compound State Machine?

Idea: Core accesses as universal semantics — load, store, evict, fence

Transaction translation principle:

e Deduce access performed by original requestor
e |dentify equivalent access in remote domain
e Simulate equivalent access to start local transaction

Translation table:

Origin Transaction Propagated Remote Transaction
Incoming Current Cache | Translated
Message State access | access
BISnpInv M,M store | store
® O—®

@ store

CXL cache

TLTI

Memory Pool

Mede\_?\

Directory

MESIF

4
7
BISannv@’
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| Cache

: (3) store
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/
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Design: Semantic Request Translation TI.ITI

How to build the C: Compound State Machine? @Store
Idea: Core accesses as universal semantics — 1oad, store, evict, fence Xleache Memory Pool
. . . . I
Transaction translation principle: MemRd_A Directory
rd
7
e Deduce access performed by original requestor Bisnpinv (3)’
. . . . —A
e |dentify equivalent access in remote domain [ cache |
L] . L] I
e Simulate equivalent access to start local transaction |@store 3
MESIF | VD |
g irect
Translation table: e
/7
/
Origin Transaction Propagated Remote Transaction Fwd GetM @
Incoming Current Cache | Translated | Action Next state ‘
Message | State access | access Private cache
Core
BISnpInv M,M store | store Send Fwd_GetM to local owner
) © @ 0,
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Design: Semantic Request Translation TI_ITI

How to build the C: Compound State Machine? @store
Idea: Core accesses as universal semantics — 1oad, store, evict, fence XL cache Memory Pool
. . . . I
Transaction translation principle: MemRd_A Directory
7
7
® Deduce access performed by original requestor Bisnpinv (3)’
. . . . “a
e |dentify equivalent access in remote domain [ cache |
L] . L] I
e Simulate equivalent access to start local transaction @ store (3
\ J
. O
Translation table: | =y |
/7
/
Origin Transaction Propagated Remote Transaction Fwd GetM @
Incoming Current Cache | Translated | Action Next state ‘
Message | State access | access Private cache
Core
BISnpInv M,M store | store Send Fwd_GetM to local owner MIA, M
) ® @ 0,
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Implementation

Implement C3 controller logic with gems cache coherence models (SLICC)

Generate C* controllers? from protocol specifications (PCC"):

{} Host protoco| specs —» —> @ MUF(P Model Checking O
. C generator
{} CXL specs | > ﬁ Gems coherence DSL (SLICC)
Protocol Generate Synthesize
. —— Translation —— C Compound
parsing Tables FSM

" Oswald et al., ProtoGen: Automatically Generating Directory Cache Coherence Protocols from Atomic Specifications, ISCA’18
2 Lefort et al., vCXLGen: Automated Synthesis and Verification of CXL Bridges for Heterogeneous Architectures, ASPLOS’26
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Evaluation: Methodology

We evaluate C through gems simulations:

®  SE syscall-emulation, Ruby memory subsystem, Garnet interconnect network models

® 03 out-of-order CPU models
e SLICCDSL to implement all CC controllers (incl. C)

System model:

3 heterogeneous clusters: 2 hosts + 1 CXL fabric (w/ remote memory)

Memory Pool

CXL Interconnect ]

CXL req/resp

CXL reqg/resp

c (&
Host req/resp Host reqg/resp,
Host Interconnect ] [ Host Interconnect ]
Private cache Private cache Private cache Private cache
Core Core Core - Core
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Evaluation: Methodology TI.ITI

We evaluate C through gems simulations:

®  SE syscall-emulation, Ruby memory subsystem, Garnet interconnect network models
® O3 out-of-order CPU models
e SLICCDSL to implement all CC controllers (incl. C)

System model: Memery Pool
3 heterogeneous clusters: 2 hosts + 1 CXL fabric (w/ remote memory)
[ CXL Interconnect ]
CXL req/resp CXL reqg/resp
c (&
Logic Logic
Host req/resp Host reqg/resp,
Heterogeneous cluster combinations with C*: [ — il (— ]
3 host prOtOCOIS: MESI’ MOESI’ MESIF Private cache Private cache Private cache Private cache
2 interconnect protocols:  MESI, CXL.mem Core o Cor ore S
2 host MCMs: Arm, TSO
Example combination: MESI_CXL_MESIF with Arm_Tso
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Evaluation: Goals

We answer the following evaluation questions:

® Correctness: the C logic (ESM) and SLICC controllers?
o Can C correctly reconcile heterogeneous MCMs?

O Can C correctly interoperate heterogeneous CC protocols?

e Genericity: Is C applicable to different heterogeneous host protocols and MCMs?

e Performance: What are the overheads of the C methodology?
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Evaluation: Correctness

Does C’ really enforce Compound Memory Consistency in gems?

Workloads: 7 litmus tests generated with herd7' for ARM ISA
Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs

MESI-CXL-MESI MESI-CXL-MOESI
Test Arm-Arm TSO-Arm TSO-TSO Arm-Arm TSO-Arm TSO-TSO
2_2W-sys v v v v v v
IRIW-sys v v v v v v
LB-sys v v v v v v
MP-sys v v v v v v
R-sys v v v v v v
S-sys v v v v v v
SB-sys v v v v v v

Observation: No forbidden outcomes (disallowed by hosts’ MCM) after 100,000 executions of each test

Takeaway: C successfully preserve host native MCMs with CXL memory

"herd7 consistency model simulator: https://diy.inria.fr/www/
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Evaluation: Genericity

Can C reconcile heterogeneous MCMs and protocols?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)
Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs

MESI-CXL-MESI MESI-CXL-MOESI

bhhnhk

PARSEC PHOENIX SPLASH PARSEC PHOENIX SPLASH
mean (8) mean (7) mean (15) mean (8) mean (7) mean (15)

—
(%2}
'

e 9
o w

Normalized runtime
(w.r.t. Arm Arm)
—
o

Observation:
- The weaker the MCM, the faster workloads run (on avg., exec. time: Arm < Arm_TS0 < TS0)

- Weak MCM is not penalized by strong MCM in Arm_TSO

Takeaway: CC composition of MCMs is not overly strong (preserves weak MCM performance)

49



Evaluation: Performance TI.ITI

What are the overheads of C controllers?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)
Baseline: unified homogeneous MESI (MESI-MESI-MESI) -> conventional MESI LLC instead of C3

B2 MESI-MESI-MESI BB MESI-CXL-MESI  EEE MESI-CXL-MOESI  EZ# MESI-CXL-MESIF

PARSEC Splash-4 Phoenix Mean

=
»

[
N

Normalized
Execution Time

ey
o

9
©

' @ X * « e < o 3 2 N \3
& (H“aC o ¢e°°° e xe“a W \09‘ FO° 9 ¢ ‘“e e © LR °° C°° °°(\ NS 6\ @° o\(""\ 3‘6 93‘\ o5 «e°° S5 g P o
27 (a «\ e (" N ) o0~
o(- q [ s a“\*’ &8 o
~N N «
W
Observations:

1- C overheads are negligible in most workloads

2- All CXL variants are significantly slower for some workloads (e.g., barnes, lu-ncont, histogram)
Additional analysis: CXL . mem is slower than textbook MESI (more handshaking & memory traffic)

Takeaway: C logic overheads are negligible, CXL . mem performs worse than textbook MESI
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Conclusion TI.ITI

Motivation:
CXL does not support heterogeneous architectures

Problem:
How to systematically and correctly extend heterogeneous architectures for CXL memory?

Solution: C
Pluggable coherence bridges that translate per-host coherence transactions to CXL & preserve original semantics

C* key ideas:

e 2 propagation rules: Delegation & Atomicity: forward coherence transaction effects to other domains

® Request semantic translation: leverage correct equivalent transaction in other coherence domains

e FSM compounding: Couple FSMs of host directory & CXL cache to implement C logic
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