
C³: CXL Coherence Controllers
for Heterogeneous Architectures

Anatole Lefort, David Schall, Nicolò Carpentieri, Julian Pritzi,
Soham Chakraborty, Nicolai Oswald, Pramod Bhatotia

Systems Research Group
https://dse.in.tum.de/

Technical University of Munich

https://dse.in.tum.de/

In a world of scalable data centers

● Memory is a critical resource for data centers,
● But is not efficiently managed:

● $$$ wasted in energy and hardware

The Promise of CXL

2

CXL promises on-demand allocation from remote memory chassis

¹ Reidys et al., Coach: Exploiting Temporal Patterns for All-Resource Oversubscription in Cloud Platforms, ASPLOS’25
² Li et al., Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS’23
³ Tirmazi et al., Borg: the next generation, EuroSys’20

Over-provisioning¹
Low avg. usage

(~40%)²
Stranded memory

(up to 25%)³

Hardware-based main memory disaggregation (remote DRAM pooling)
The CXL memory abstraction

3

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

The CXL memory abstraction

4

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

The CXL memory abstraction

5

Universal
load/store
interface

Fine-grain
data transfers

(64B)

Cache-coherent
accesses

Shared Memory
abstraction+ + ➭

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

The CXL memory abstraction

6

Universal
load/store
interface

Fine-grain
data transfers

(64B)

Cache-coherent
accesses

Shared Memory
abstraction+ + ➭

Physica Mem.

Compute Node 1

Mem Node

CXL Interco

An hardware-based abstraction:

○ Hosts map remote CXL memory regions as physical ranges

○ Data moves transparently to local CPU caches

Compute Node 2

Hardware-based main memory disaggregation (remote DRAM pooling)

CPUs access CXL-based remote memory "just like a regular DIMM":

The CXL memory abstraction

7

But, Is CXL ready for modern data centers?

Universal
load/store
interface

Fine-grain
data transfers

(64B)

Cache-coherent
accesses

Shared Memory
abstraction+ + ➭

x86, ARM, GPUs, Domain-specific accelerators
… and the trend only keeps growing!

No, Modern Data Centers are Heterogeneous!

8

Current CXL hardware (& specifications)
do not support heterogeneous architectures

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

9

Memory Node

PCIe

Compute Node

Physical Mem

CXL Interconnect

Intel ARM

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

10

Memory Node

PCIe

Compute Node

Physical Mem

CXL InterconnectMESIF MOESI

CXL.mem

Intel ARM

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

11

Memory Node

PCIe

Compute Node

Physical Mem

CXL InterconnectMESIF MOESI

CXL.mem

Intel ARM

x86-TSO Weak

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

12

Memory Node

PCIe

Compute Node

Physical Mem

CXL Interconnect

Heterogeneous protocols

MESIF MOESI

CXL.mem

x86-TSO Weak

Intel ARM

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

13

Memory Node

PCIe

Compute Node

Physical Mem

CXL Interconnect

Heterogeneous protocols

MESIF MOESI

CXL.mem

x86-TSO Weak

Intel ARM

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

14

Memory Node

PCIe

Compute Node

Physical Mem

CXL Interconnect

Heterogeneous protocols

MESIF MOESI

CXL.mem

x86-TSO Weak

Intel ARM

What MCM ?

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

15

Memory Node

PCIe

Compute Node

Physical Mem

CXL Interconnect

Heterogeneous protocols

MESIF MOESI

CXL.mem

x86-TSO Weak

How to interoperate vendor-specific cache-coherence for CXL, and avoid memory consistency bugs?

Intel ARM

What MCM ?

Mismatch of CC protocols and memory consistency models (MCMs)

➡ Each host architecture is tailored for a CC protocol and MCM
➡ CXL protocol specifications do not cover interoperation with heterogeneous architectures

Why is CXL hard for heterogeneous architectures?

16

Memory Node

PCIe

Compute Node

Physical Mem

CXL InterconnectMESIF MOESI

CXL.mem

x86-TSO Weak

How to interoperate vendor-specific cache-coherence for CXL, and avoid memory consistency bugs?

Intel ARM

Heterogeneous protocols

Intuition:
Extend MOESI & MESIF
to “talk” with CXL

What MCM ?

How to extend heterogeneous architectures for CXL shared memory?
➪ Vendors must re-design host-specific coherence protocols for CXL interoperability

The Challenges

17

Problem Statement: How to systematically and correctly
extend heterogeneous architectures for CXL memory?

Diverse

Many vendor-specific
coherence protocols (CC) and
memory consistency models

(MCMs)

Complex protocols

Large state machines (~20
states, ~40 transitions) tightly

coupled to host’s MCMs

Semantic gap

Manual & ad-hoc translation of
host-specific coherence

requests to CXL protocol

1 2 3

C³: CXL Coherence Controllers for Heterogeneous Architectures
Our Proposal: C³

18

Genericity

Applicable to any
(existing and upcoming)

architectures

Non-intrusivity

Avoid internal modifications to
hosts (coherence & MCM),

or to CXL

Correctness

Preserve by construction
original host MCMs

Our Solution: Pluggable coherence bridges controllers to translate
host-specific coherence protocols to CXL and to preserve original memory semantics

1 2 3

Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)

19

Core

Private cache

Directory

Compute Node

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory

Core

Private cache

LLC

Overview: C³ bridges for CXL interoperability

Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)

20

Core

Private cache

Directory

Compute Node

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory

Core

Private cache

LLC

C³

Overview: C³ bridges for CXL interoperability

Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)

21

Core

Private cache

Directory

Compute Node

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory

Core

Private cache

LLC

C³
Cache

Overview: C³ bridges for CXL interoperability

Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)

22

Core

Private cache

Directory

Compute Node

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory
C³

LogicCache

Core

Private cache

LLC

Overview: C³ bridges for CXL interoperability

Abstraction: C³ sits at the interface between hosts and CXL

Key ideas:

● C³ logic to perform semantic & context-aware translation
between host and CXL protocol requests/responses

● Preserve host memory orderings, regardless of other
heterogeneous hosts sharing the same CXL region

● No change required to host protocol, MCM, CXL protocol,
or compiled program binaries

Contributions:

● Systematic and generic methodology to build
host-specific C³ controllers from protocol specifications

● Correct-by-construction (formally verified)

23

Overview: C³ bridges for CXL interoperability

Core

Private cache

Directory

Compute Node

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory
C³

LogicCache

Core

Private cache

LLC
Host req/resp

CXL req/resp

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

24

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

25

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

store1

GetM2

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates

26

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

store1

GetM2

MemRd_ACmp_E 34

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates

27

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

store1

GetM2

MemRd_ACmp_E 34

GetM_Ack 5

store hit 6

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates

28

Design: The C³ Compound State Machine

Core

Private cache

Directory

store

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

Example:
- Host GetM request (-) encapsulates the CXL transaction (-)

GetM

GetM_Ack

2

1

MemRd_ACmp_E 3

5

4

store hit 6

2 5 3 4

29

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

BISnpInv 2

1
MemRd_A

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates

Example:
- Host GetM request (-) encapsulates the CXL transaction (-) 2 5 3 4

30

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

BISnpInv 2

1
MemRd_A

GetM_Ack

Fwd_GetM

4

3

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates
● C³ propagates CXL requests that change local cache permissions

Example:
- Host GetM request (-) encapsulates the CXL transaction (-) 2 5 3 4

31

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

GetM_Ack

Fwd_GetM

4

BIRsp_EBISnpInv 5

3

2

Cmp_E
1

MemRd_A

6

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates
● C³ propagates CXL requests that change local cache permissions

Example:
- Host GetM request (-) encapsulates the CXL transaction (-) 2 5 3 4

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates
● C³ propagates CXL requests that change local cache permissions

32

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

GetM_Ack

Fwd_GetM

4

BIRsp_EBISnpInv 5

3

2

Cmp_E
1

MemRd_A

6

Example:
- Host GetM request (-) encapsulates the CXL transaction (-)
- CXL snoop request (-) encapsulates the host transaction (-)

2 5 3 4

2 5 3 4

C³ combines the FSMs from host directory & CXL cache

C³ appears as a directory to hosts, and caching client to CXL

C³ composes transactions between host protocol and CXL.mem

● C³ propagates requests that produce globally visible memory updates
● C³ propagates CXL requests that change local cache permissions

33

Design: The C³ Compound State Machine

Core

Private cache

Directory

Memory Pool

CXL Interconnect

Directory

Cache

Host Interconnect

C³ logic

GetM_Ack

Fwd_GetM

4

BIRsp_EBISnpInv 5

3

2

Cmp_E
1

MemRd_A

6

Example:
- Host GetM request (-) encapsulates the CXL transaction (-)
- CXL snoop request (-) encapsulates the host transaction (-)

2 5 3 4

2 5 3 4

C³ propagation rules: Atomicity & Delegation

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

34

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor

35

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain

36

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

store4

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

37

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

38

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

39

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

BISnpInv M,M

3

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

40

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

Cache
access

BISnpInv M,M store

3 1

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

41

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

Cache
access

Translated
access

BISnpInv M,M store store

3 1 4

How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

42

Design: Semantic Request Translation

store

Core

Private cache

Directory

Memory Pool

Directory

Cache

BISnpInv 3

C³
CXL.mem

MESIF

store

2
MemRd_A

1

CXL cache

4

Fwd_GetM 5Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

Cache
access

Translated
access

Action Next state

BISnpInv M,M store store Send Fwd_GetM to local owner

3 1 4 5

store
How to build the C³ Compound State Machine?

Idea: Core accesses as universal semantics — load,store,evict,fence

Transaction translation principle:

● Deduce access performed by original requestor
● Identify equivalent access in remote domain
● Simulate equivalent access to start local transaction

Translation table:

43

Design: Semantic Request Translation

Core

Private cache

Directory

Memory Pool

Directory

Cache

Fwd_GetM

BISnpInv

5

3

2
MemRd_A

C³
CXL.mem

MESIF

Origin Transaction Propagated Remote Transaction

Incoming
Message

Current
State

Cache
access

Translated
access

Action Next state

BISnpInv M,M store store Send Fwd_GetM to local owner MIA, MI

1

CXL cache

store4

3 1 4 5

Implement C³ controller logic with gem5 cache coherence models (SLICC)

Generate C³ controllers² from protocol specifications (PCC¹):

44

Implementation

C³ generator
Murφ Model Checking

Gem5 coherence DSL (SLICC)

Host protocol specs

CXL specs

Protocol
parsing

Generate
Translation

Tables

Synthesize
C³ Compound

FSM

¹ Oswald et al., ProtoGen: Automatically Generating Directory Cache Coherence Protocols from Atomic Specifications, ISCA’18
² Lefort et al., vCXLGen: Automated Synthesis and Verification of CXL Bridges for Heterogeneous Architectures, ASPLOS’26

We evaluate C³ through gem5 simulations:

● SE syscall-emulation, Ruby memory subsystem, Garnet interconnect network models
● O3 out-of-order CPU models
● SLICC DSL to implement all CC controllers (incl. C³)

System model:
3 heterogeneous clusters: 2 hosts + 1 CXL fabric (w/ remote memory)

Evaluation: Methodology

Core

Private cache

Directory

Compute Node 1

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory
C³

LogicCache

Core

Private cache

LLC
Host req/resp

CXL req/resp

Core

Private cache

Directory

Compute Node 2

Host Interconnect

Local Memory
C³

Logic Cache

Core

Private cache

LLC
Host req/resp

CXL req/resp

45

We evaluate C³ through gem5 simulations:

● SE syscall-emulation, Ruby memory subsystem, Garnet interconnect network models
● O3 out-of-order CPU models
● SLICC DSL to implement all CC controllers (incl. C³)

System model:
3 heterogeneous clusters: 2 hosts + 1 CXL fabric (w/ remote memory)

Heterogeneous cluster combinations with C³:
3 host protocols: MESI, MOESI, MESIF
2 interconnect protocols: MESI, CXL.mem
2 host MCMs: Arm, TSO

Evaluation: Methodology

Core

Private cache

Directory

Compute Node 1

Directory

Memory Pool

Memory Node

CXL Interconnect

Host Interconnect

Local Memory
C³

LogicCache

Core

Private cache

LLC
Host req/resp

CXL req/resp

Core

Private cache

Directory

Compute Node 2

Host Interconnect

Local Memory
C³

Logic Cache

Core

Private cache

LLC
Host req/resp

CXL req/resp

46

Example combination: MESI_CXL_MESIF with Arm_Tso

We answer the following evaluation questions:

● Correctness: the C³ logic (FSM) and SLICC controllers?
○ Can C³ correctly reconcile heterogeneous MCMs?
○ Can C³ correctly interoperate heterogeneous CC protocols?

● Genericity: Is C³ applicable to different heterogeneous host protocols and MCMs?

● Performance: What are the overheads of the C³ methodology?

47

Evaluation: Goals

Does C³ really enforce Compound Memory Consistency in gem5?

Workloads: 7 litmus tests generated with herd7¹ for ARM ISA
Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs

Observation: No forbidden outcomes (disallowed by hosts’ MCM) after 100,000 executions of each test

48

Evaluation: Correctness

¹ herd7 consistency model simulator: https://diy.inria.fr/www/

Takeaway: C³ successfully preserve host native MCMs with CXL memory

Can C³ reconcile heterogeneous MCMs and protocols?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)

Systems: 6 heterogeneous combinations varying 3 protocols & 2 MCMs

Observation:
- The weaker the MCM, the faster workloads run (on avg., exec. time: Arm < Arm_TSO < TSO)

- Weak MCM is not penalized by strong MCM in Arm_TSO

49

Evaluation: Genericity

Takeaway: C³ composition of MCMs is not overly strong (preserves weak MCM performance)

Takeaway: C³ logic overheads are negligible, CXL.mem performs worse than textbook MESI

What are the overheads of C³ controllers?

Workloads: 33 parallel applications (PARSEC, SPLASH-4 & Phoenix suites)

Baseline: unified homogeneous MESI (MESI-MESI-MESI) -> conventional MESI LLC instead of C³

Observations:
1- C³ overheads are negligible in most workloads
2- All CXL variants are significantly slower for some workloads (e.g., barnes, lu-ncont, histogram)

Additional analysis: CXL.mem is slower than textbook MESI (more handshaking & memory traffic)

50

Evaluation: Performance

C³ key ideas:

● 2 propagation rules: Delegation & Atomicity: forward coherence transaction effects to other domains

● Request semantic translation: leverage correct equivalent transaction in other coherence domains

● FSM compounding: Couple FSMs of host directory & CXL cache to implement C³ logic

Solution: C³
Pluggable coherence bridges that translate per-host coherence transactions to CXL & preserve original semantics

Problem:
How to systematically and correctly extend heterogeneous architectures for CXL memory?

51

Conclusion

Motivation:
CXL does not support heterogeneous architectures

